The VWolcano Optimizer Generator: Extensibility and Efficient Search

Goetz Graefe, Portland State Uasity
William J. McKenna, Uniersity of Colorado at Boulder

From Proc. IEEE Conf. on Data Eng., Vienna, April 1993, p. 209.

Abstract

Emeging database application domains demand not only fuectionality but also high
performance. @ satisfy these tw requirements, the Volcano project providedicednt,
extensible tools for query and request processing, particularly for object-oriented and scientific
database systems. One of these tools isveopéimizer generatorData model, logical algebra,
physical algebra, and optimization rules are translated by the optimizer generator into optimizer
source code.Compared with our earlier EXODUS optimizer generator prototype, the search
engine is more extensible and powerful; itypdes efective sipport for non-trivial cost models

and for physical properties such as sort ordérthe same time, it is much more efficient as it
combines dynamic programming, which untindad been used only for relational select-
project-join optimization, with goal-directed search and branch-and-bound prudorgpared

with other rule-based optimization systems, ityies complete data model independence and
more natural extensibility.

Index Terms

Extensible database systems, query optimization, algebra, search, transformation rules,
implementation rules, waiting systems, dynamic programming, modularization, search
efficiengy.

1. Introduction

While extensibility is an important goal and requirement for yneurrent database research
projects and system prototypes, performance must not be sacrificet famasons. Firsiglata
volumes stored in database systems continue tw, gnomary application domains far lyend

the capabilities of most existing database systems. Second, in ordexrd¢onee acceptance
problems in emerging database application areas such as scientific computation, database
systems must achie & least the same performance as the file systems currently in use.
Additional software layers for database management must be counterbalanced by database
performance advantages normally not used in these application abgdsnization and
parallelization are prime candidates to yide these performance advantages, and tools and
techniques for optimization and parallelization are crucial for the wider usetefséle
database technology.

For a number of research projects, namely the Volcano extensible, parallel query processor
[GCD94], the RveLATION OODBMS project [MDK94] and optimization and parallelization in
scientific databases [WoG93] as well as to assist resedarts dfy other researchers, wevha
built a nev extensible query optimization system. Our earlier experience with the EXODUS

optimizer generator had been inconclesivhile it had preen the feasibility and alidity of the
optimizer generator paradigm, it was fidfilt to construct efficient, production-quality
optimizers. Thereforewe designed a me optimizer generatorrequiring sgeral important
improvements @er the EXODUS prototype. First, this weoptimizer generator had to be usable
both in the Volcano project with the existing quexgaition softvare as well as in other projects
as a stand-alone tool. Second, the ggstem had to be morefieient, both in optimization time
and in memory consumption for the seardrhird, it had to provide &ctive, efficient, and
extensible support for pisical properties such as sort order and compression stedugh, it
had to permit use of heuristics and data model semantics to guide the search and to prune futile
parts of the search spacEinally, it had to support flable cost models that permit generating
dynamic plans for incompletely specified queries.

In this paperwe describe the Volcano Optimizer Generatohich will soon fulfill all the
requirements alwve. Section 2 introduces the main concepts of the Volcano optimizer generator
and enumerates facilities for tailoring amneptimizer. Section 3 discusses the optimizer search
stratgy in detail. Functionality extensibility, and search étiency of the EXODUS and dMcano
optimizer generators are compared in SectiondSection 5, we describe and compare other
research into extensible query optimizatioe dfer our conclusions from this research in
Section 6.

2. TheOutside View of the Volcano Optimizer Generator

In this section, we describe the Volcano optimizer generator as seen by the person who is
implementing a database system and its query optimizer focus is the wide array ddilities

given to the optimizer implementpr.e., modularity and extensibility of the Volcano optimizer
generator design. After considering the design principles of the Volcano optimizer genezator
discuss generator input and operation. Section 3 discusses the search strategy used by optimizers
generated with the Volcano optimizer generator.

Figure 1 shows the optimizer generator paradigm. When the DBMSasefisvbeing wilt,
a model specification is translated into optimizer source code, which is then compiled &add link
with the other DBMS softare such as the querxeeution engine. Some of this software is
written by the optimizer implementoe.g., cost functionsAfter a data model description has
been translated into source code for the optimiber generated code is compiled and éithk

Model Specification
y Optimizer Generator
Optimizer Source Code
y Compiler and Linker

Optimizer Plan

Query
Figure 1. The Generator Paradigm.

with the search engine that is part of the Volcano optimization amtw\Whenthe DBMS is
operational and a query is entered, the query is passed to the optinhimdr generates an
optimized plan for it. We all the person who specifies the data model and implements the
DBMS software the "optimizer implementor The person who poses queries to be optimized
and eecuted by the database system is called the DBMS user.

2.1. DesigrnPrinciples

There are fig fundamental design decisions embodied in the system, which contribute to the
extensibility and search ®fiency of optimizers designed and implemented with th@c®no
optimizer generatorWe explain and justify these decisions in turn.

First, while query processing in relational systems haayal been based on the relational
algebra, it is becoming increasingly clear that query processing in extensible and object-oriented
systems will also be based on algebraic techniques, i.e., by defining algebra operators, algebraic
equvaence laws, and suitable implementation algorith®ezeral object-oriented algebrasvea
recently been proposed, e.g. [ShZ90, StO91, VaD91] amony otfagrs. Theicommon thread
is that algebra operators consume one or molle tgpes (e.g., a set, bag, arréine series, or
list) and produce another one suitable as input into the next opefamxecution engines for
these systems are also based on algebra operators, i.e., algorithms consuming and putiducing b
types. Havever, the set of operators and the set of algorithms aferelift, and selecting the
most efficient algorithms is one of the central tasks of query optimizaiitverefore, the
Volcano optimizer generator usesotagebras, called the logical and theypital algebras, and
generates optimizers that map apression of the logical algebra (a query) into an expression of
the physical algebra (a queryakiation plan consisting of algorithms)lo do 0, it uses
transformations within the logical algebra and cost-based mapping of logical operators to
algorithms.

Second, rules va keen identified as a general concept to specifydaenige about patterns
in a concise and modular fashion, andlealge of algebraic laws as required for gleince
transformations in query optimization can easily be expressed using patterns and hukes.
most extensible query optimization systems use rules, including the Volcano optimizer generator
Furthermore, the focus on independent rules ensures modulamitgur design, rules are
translated independently from one another and are combined only by the search engine when
optimizing a query Considering that query optimization is one of the conceptually most
complex components of gndatabase system, modularization is an advantage in itself both for
initial construction of an optimizer and for its maintenance.

Third, the choices that the query optimizer can enk map a query into an optimal
equivaent query gauation plan are represented as algebraic velguices in the ®Mcano
optimizer generatos’'input. Othersystems use multiple intermediateds when transforming a
guery into a planFor example, the cost-based optimizer component of the extensible relational
Starlurst database system uses an "expansion grammar" with muligk dé "non-terminals”
such as commutae knary join, non-commutate knary join, etc. [Loh88]. We felt that
multiple intermediate keels and the need to re-design them for & ro extended algebra

confuse issues of egalence, i.e., defining the choices open to the optima®t of search
method, i.e., the order in which the optimizer considers possible guematon plans. Just as
navigational query languages are less user-friendly than nagatesnal ones, anxé&ensible

guery optimization system that requires control information from the database implementor is
less comenient than one that does notherefore, optimizer choices are represented in the
Volcano optimizer generatarinput file as algebraic eqaences, and the optimizer generagor’
search engine applies them in a suitable marideweve, for database implementors who wish

to exert control wer the search, e.g., who wish to specify search and pruning heuristics, there
will be optional facilities to do so.

The fourth fundamental design decision concerns rule interpretation vs. compiliation.
general, interpretation can be made monghile (in particular the rule set can be augmented at
run-time), while compiled rule sets typicallxeeute faster Since query optimization isery
CPU-intensre, we cecided on rule compilation similar to the EXODUS optimizer generator
Moreover, we lkelieve that extending a query processing system and its optimizer is so gomple
and time-consuming that it canvee be dne quickly making the strongest argument for an
interpreter pointless. In order to gain additional flexibility with compiled rule sets, it may be
useful to parameterize the rules and their conditions, e.g., to control the thoroughness of the
search, and to obserend exploit repeated sequences of rule applications. In general, the issue
of flexibility in the search engine and the choice between interpretation vs. compilation are
orthogonal.

Finally, the search engine used by optimizers generated with the Volcano optimizer
generator is based on dynamic programmivMg will discuss the use of dynamic programming
in Section 3.

2.2. Optimizer Generator Input and Optimizer Operation

Since one major design goal of the Volcano optimizer generator was to minimize the
assumptions about the data model to be implemented, the optimizer generator wdlyspao
framawork into which an optimizer implementor can integrate data model specific operations and
functions. Inthis section, we discuss the components that the optimizer implementor defines
when implementing a medatabase query optimizeThe actual user queries andeution plans

are input and output of the generated optimiasréiovn in Figure 1. All other components
discussed in this section are specified by the optimizer implementor before optimizer generation
in the form of equialence rules and support functions, compiled and linked during optimizer
generation, and then used by the generated optimizer when optimizing quWégielscuss parts

of the operation of generated optimizers here, bwelédo the section on search to drall the

pieces together.

The user queries to be optimized by a generated optimizer are specified as an algebra
expression (tree) dbgical operators. The translation from a user intace into a logical algebra
expression must be performed by the parser and is not discussed here. The set of logical
operators is declared in the model specification and compiled into the optimizer during
generation. Operatorsan hae zro or more inputs; the number of inputs is not restricidde

output of the optimizer is a plan, which is an expressi@n the algebra of algorithmsThe set
of algorithms, their capabilities and their costs represents the data formats and physical storage
structures used by the database system for permanent and temporary data.

Optimization consists of mapping a logical algebra expression into the optimelequi
physical algebraxgression. Irother words, a generated optimizer reorders operators and selects
implementation algorithmsThe algebraic rules of expression eglénce, e.g., commutatty
or associatiity, are specified usingransformation rules. The possible mappings of operators to
algorithms are specified usimgplementation rules. It is important that the rule language allo
for complex mappings. Br example, a join followed by a projection (without duplicate naaifo
should be implemented in a single procedure; therefore, it is possible to map multiple logical
operators to a single physical operat@®@eyond simple pattern matching of operators and
algorithms, additional conditions may be specified with both kinds of rdlbs is done by
attaching condition code to a rule, which will beake dter a pattern match has succeeded.

The results of expressions are described using properties, similar to the concepts of
properties in the EXODUS optimizer generator and the Gitstrioptimizer Logical properties
can be devied from the logical algebra expression and include schexpacted size, etc., while
physical properties depend on algorithms, e.g., sort ord@&rtitioning, etc. When optimizing a
mary-sorted algebra, the logical properties also include the type (or sort) of an intermediate
result, which can be inspected by a rsill@ndition code to ensure that rules are only applied to
expressions of the correct type. Logical properties are attached t@leque classes — sets of
equvaent logical expressions and plans — whereas physical properties are attached to specific
plans and algorithm choices.

The set of pisical properties is summarized for each intermediate resultpimyscal
property vector, which is defined by the optimizer implementor and treated as an abstract data
type by the Volcano optimizer generator and its search engine. In other words, the types and
semantics of physical properties can be designed by the optimizer implementor.

There are some operators in the physical algebra that do not correspogdperator in
the logical algebra, for example sorting and decompresdite. purpose of these operators is
not to perform ay logical data manipulation but to enforce physical properties in their outputs
that are required for subsequent query processing algoritWesall these operatomnforcers;
they are comparable to the "glue" operators in Siesb Itis possible for an enforcer to ensure
two properties, or to enforce one but degtanother.

Each optimization goal (and subgoal) is a pair of a logigpression and a phical
property ector In order to decide whether or not an algorithm or enforcer can be used to
execute the root node of a logical expression, a generated optimizer matches the implementation
rule, xecutes the condition code associated with the rule, and tivekesan applicability
function that determines whether or not the algorithm or enforcer canedéhe logical
expression with pysical properties that satisfy the physical propedgtor The applicability
functions also determine the physical property vectors that the algaritpeits must satisfy
For example, when optimizing a joinxpression whose result should be sorted on the join
attribute, lybrid hash join does not qualify while merge-join qualifies with the requirement that

its inputs be sortedThe sort enforcer also passes the test, and the requirements for its input do
not include sort orderWhen the input to the sort is optimized, hybrid hash join qualifié®re

is also a provision to ensure that algorithms do not qualify redundegtlymerge-join must not

be considered as input to the sort in this example.

After the optimizer decides to explore using an algorithm or enforcenvokes the
algorithm’s cost function to estimate its cost. Cost is abstract data type for the optimizer
generator; therefore, the optimizer implementor can choose cost to be a number (e.g., estimated
elapsed time), a record (e.g., estimated CPU time and I/O count)y antlaer type. Cost
arithmetic and comparisons are performed hyokmg functions associated with the abstract
data type "cost."

For each logical and pfsical algebra expression, logical and physical properties akedleri
using property functions. There must be one property function for each logical operator
algorithm, and enforcerThelogical properties are determined based on the logicgbression,
before ag optimization is performed, by the property functions associated with the logical
operators. Br example, the schema of an intermediate result can be determined independently
of which one of may equivalent algebra xpressions creates it. The logical property functions
also encapsulate seladty estimation. On the other harnphysical properties such as sort order
can only be determined after axeeution plan has been choseAs one of man consistency
checks, generated optimizers verify that the physical properties of a chosen plan really do satisfy
the physical property vectongn as @rt of the optimization goal.

To summarize this section, the optimizer implementorvgles (1) a set of logical
operators, (2) algebraic transformation rules, possibly with condition code, (3) a set of algorithms
and enforcers, (4) implementation rules, possibly with condition code, (5) an ADT "cost" with
functions for basic arithmetic and comparison, (6) an ADT "logical properties,” (7) an ADT
"physical property ector" including comparisons functions (equality andrecp (8) an
applicability function for each algorithm and enford®) a cost function for each algorithm and
enforcer (10) a property function for each operatagorithm, and enforcerThis might seem to
be a lot of code; hwever, dl this functionality is required to construct a database query
optimizer with or without an optimizer generato€onsidering that query optimizers are
typically one of the most intricate modules of a database management systems and that the
optimizer generator prescribes a clean modularization for these necessary optimizer components,
the effort of lilding a nev database query optimizer using the Volcano optimizer generator
should be significantly less than designing and implementingvapEnizer from scratchThis
is particularly true since the optimizer implementor using the Volcano optimizer generator does
not need to design and implement avisearch algorithm.

3. TheSearch Engine

Since the general paradigm of database query optimization is to create atiefgtativalent)
guery @aluation plans and then to choose among theyrpaasible plans, the search engine and
its algorithm are central components ofy ayjuery optimizer Instead of forcing each database
and optimizer implementor to implement an entirelgyvrgarch engine and algorithm, the

\olcano optimizer generator provides a search engine to be used in all created optifizers.
search engine is linked automatically with the pattern matching and rule application code
generated from the data model description.

Since our rperience with the EXODUS optimizer generator indicated that it is easy to
waste a lot of search effort irkensible query optimization, we designed the search algorithm
for the \blcano optimizer generator to use dynamic programming and to be very goal-oriented,
i.e., driven by reeds rather than by possibilities.

Dynamic programming has been used before in database query optimization, in particular in
the System R optimizer [SAC79] and in Stadi’s cost-based optimizer [LFL88, Loh88]ub
only for relational select-project-join querie$he search strategy designed with tr@csno
optimizer generator extends dynamic programming from relational join optimization to general
algebraic query and request optimization and combines it with a top-down, goal-oriented control
stratgy for algebras in which the number of possible plans exceeds practical limits of pre-
computation. Ourdynamic programming approach des eguivalent expressions and plans
only for those partial queries that are considered as partsgefr lanbqueries (and the entire
guery), not all eqwalent expressions and plans that are feasible or seem interesting by their sort
order [SAC79]. Thusthe exploration and optimization of subqueries and their alteendéins
is tightly directed andery goal-oriented. In a ay, while the search engines of the EXODUS
optimizer generator as well as of the System R and 8#drbelational systems use faw
chaining (in the sense in which this term is used in Al), thleavio search algorithm uses
backward chaining, because it explores only those subqueries and plans that truly participate in a
larger expression. W all our search algorithndirected dynamic programming.

Dynamic programming is used in optimizers created with tileavio optimizer generator
by retaining a lage set of partial optimization results and using these earlier results in later
optimization decisionsCurrently this set of partial optimization results is reinitialized for each
guery being optimized. In otheronds, earlier partial optimization results are used during the
optimization of only a single queryWe ae considering research into londieted partial results
in the future.

Algebraic transformation systemswals include the possibility of deinhg the same
expression in seeral different ways. Inorder to preent redundant optimization effort by
detecting redundant (i.e., multiple eeplént) dervations of the same logical expressions and
plans during optimization, expression and plans are captured in a hash table of expressions and
equvaence classesAn equivalence class representsawollections, one of equélent logical
and one of physical expressions (plans). The logical algebra expressions are usedeiar ef
and complete>ploration of the search space, and plans are used for a fast choice of a suitable
input plan that satisfies pbical property requirementsfFor each combination of pfsical
properties for which an equalence class has already been optimized, e.g., unsorted, sorted on A,
and sorted on B, the best plan found is kept.

Figure 2 shows an outline of the search algorithm used byalcansd optimizer generator
The original ivocation of the FindBestPlan procedure indicates the logical expression passed to
the optimizer as the query to be optimizedysital properties as requested by the user (for

FindBestPlan (LogExpPhysProp, Limit)
if the pair LogExpr and PhysProp is in the look-up table
if the cost in the look-up table < Limit
return Plan and Cost
else
return failure
[* else: optimization required */
create the set of possible "u@s" from
applicable transformations
algorithms that gie the required PhysProp
enforcers for required PhysProp
order the set of m@s by promise
for the most promising nves
if the move wses a transformation
apply the transformation creating NewLogExpr
call FindBestPlan (NewLogExpPhysProp, Limit)
else if the mwe wses an algorithm
TotalCost := cost of the algorithm
for each input | while TotalCost Limit
determine required physical properties PP for |
Cost = FindBestPlan (I, PBimit — TotalCost)
add Cost to TotalCost
else /* mwe wses an enforcer */
TotalCost := cost of the enforcer
modify PhysProp for enforced property
call FindBestPlan for LogExpr with nePhysProp
/* maintain the look-up table of explored facts */
if LogExpr is not in the look-up table
insert LogExpr into the look-up table
insert PhysProp and best plan found into look-up table
return best Plan and Cost

Figure 2. Outline of the Search Algorithm.

example, sort order as in the ORDER BY clause of SQL), and a cost limit. This limit is typically
infinity for a user querybut the user interface may permit users to set their own limits to "catch"
unreasonable queries, e.g., ones using a Cartesian product due to a missing join predicate.

The FindBestPlan procedure is broken int@ twarts. First,if a plan for the rpression
satisfying the physical property vector can be found in the hash table, either the plan and its cost
or a failure indication are returned depending on whether or not the found plan satisfieanthe gi
cost limit. If the epression cannot be found in the hash table, or if the expression has been
optimized before but not for the presently required physical properties, actual optimization is
begun.

There are three sets of possible g3 the optimizer canxglore at ag point. First,the
expression can be transformed using a transformation rule. Second, there might be some
algorithms that can defr the logical expression with the desired physical properties, e.g.,
hybrid hash join for unsorted output and gefoin for join output sorted on the join attrib.

Third, an enforcer might be useful to permit additional algorithm choices, e.g., a sort operator to
permit using hybrid hash joirven if the final output is to be sorted.

After all possible mees havebeen generated and assessed, the most promisves aie
pursued. Currentjywith only exhaustve sarch implemented, all mes ae pursued. In the
future, a subset of the mes will be selected, determined and ordered by another function
provided by the optimizer implementoPursuing all mees or anly a selected f& is a najor
heuristic placed into the hands of the optimizer implemeritothe extreme case, an optimizer
implementor can choose to transform a logical expression withguslgorithm selection and
cost analysis, which wers the optimizations that in Starburst are separated into the query
rewrite level. The difference between Starst's two-level and \blcanos gproach is that this
separation is mandatory in Starbt while Volcano will lege it as a tioice to be made by the
optimizer implementor.

The cost limit is used to impve the search algorithm using branch-and-bound pruning.
Once a complete plan is kmo for a logical expression (the user query or some part of it) and a
physical property gctor no aher plan or partial plan with higher cost can be part of the optimal
query @aluation plan. Therefore, it is important (for optimization speed, not for correctness)
that a relatiely good plan be found fast,ven if the optimizer usesxbaustve warch.
Furthermore, cost limits are passed down in the optimization of subexpressions, and tight upper
bounds also speed their optimization.

If a move o be pursued is a transformation, thewnexpression is formed and optimized
using FindBestPlanln order to detect the case thawotfor more) rules are werses of each
other the current expression and physical property vector is marked as "in progress."wly a ne
formed expression already exists in the hash table and is marked as "in progress,"” it is ignored
because its optimal plan will be considered when it is finished.

Often a nw/ equivalence class is created during a transformation. Consider the asgtyciati
rule in Figure 3. The expressions rooted at A and B arevalgnt and therefore belong into the
same classHowever, expression C is not equalent to ary expression in the left expression and
requires a ng equivalence class. In this case, amnequivalence class is created and optimized
as required for cost analysis and optimization of expression B.

AT R
R S T

Figure 3. Associativity Rule.

If a move © be pursued is the exploration of a normal query processing algorithm such as
meige-join, its cost is calculated by the algoritermmst function. The algorithra’gplicability
function determines the physical propersctors for the algorithms inputs, and their costs and
optimal plans are found byvaking FindBestPlan for the inputs.

For some binary operators, the actual physical properties of the inputs are not as important
as the consistegicof physical properties among the inputsor example, for a sort-based
implementation of intersection, i.e., an algorithm very similar taysygin, ary sort order of the
two inputs will suffice as long as the awnputs are sorted in the sameayw Smilarly, for a
parallel join, ag partitioning of join inputs across multiple processing nodes is acceptable if both
inputs are partitioned using compatible partitioning rulEet these cases, the search engine
permits the optimizer implementor to specify a number gjglal property vectors to be tried.

For example, for the intersection of twinputs R and S with attributes A, B, and C where R is
sorted on (A,B,C) and S is sorted on (B,A,C), both these sort orders can be specified by the
optimizer implementor and will be optimized by the generated optimidgle other possible

sort orders, e.g., (C,B,A), will be ignored.

If the move © be pursued is the use of an enforcer such as sort, its cost is estimated by a
cost function provided by the optimizer implementor and the original logical expression is
optimized using FindBestPlan with a suitably modified (i.e., relaxed) physical progetyr.v
In mary respects, enforcers are dealt witkaely like dgorithms, which is not surprising
considering that both are operators of the physical algebra. During optimization with the
modified physical propertyector dgorithms that already applied before relaxing thgsptal
properties must not be exploredaaalg For example, if a join result is required sorted on the join
column, merge-join (an algorithm) and sort (an enforcer) will ap#pen optimizing the sort
input, i.e., the join expression without the sort requirement, hybrid hash join should apply b
meige-join should not.To ensure this, FindBestPlan uses an additional parajmeteshown in
Figure 2, called the excluding physical propemtgtor that is used only when inputs to enforcers
are optimized. In the example, the excluding physical property vedoldvwecontain the sort
condition, and since merge-join is able to satisfy the excluding properties, it would not be
considered a suitable algorithm for the sort input.

At the end of (or actually already during) the optimization procedure FindBestPlelg, ne
derived interesting facts are captured in the hash table. "Interesting" is defined with respect to
possible future use, which includes both plans optimal feengphysical properties as well as
failures that can se future optimization effort for a logical expression and a physical property
vector with the same owen lower cost limits.

In summary the search algorithm employed by optimizers created with thieaivo
optimizer generator uses dynamic programming by storing all optimal subplans as well as
optimization &ilures until a query is completely optimizeWithout aly a-priori assumptions
about the algebras themselves, it is designed to magpagssions er the logical algebra into
the optimal eqwialent expressionswvar the physical algebra. Since it is very goal-oriented
through the use of physical properties andwasrinly those expressions and plans that truly
participate in promising larger plans, the algorithm is more efficient thaiopseapproaches to

10

using dynamic programming in database query optimization.

4. Comparisonwith the EXODUS Optimizer Generator

Since the EXODUS optimizer generatoasvour first attempt to design and implement an
extensible query optimization system or tool, this section compares the EXODUSleadod/
optimizer generators in some detail. The EXODUS optimizer generator was successful to the
extent that it defined a general approach to the problem based on query algebras, the generator
paradigm (data model specification as input data), separation of logical and physical algebras,
separation of logical and péical properties, xensive wse of algebraic rules (transformation
rules and implementation rules), and its focus on sw#wmodularization [Gra87, GrD87].
Considering the complexity of typical query optimization software and the importance of well-
defined modules to conquer the complexities of sarwdesign and maintenance, the latter tw
points might well be the most important contributions of the EXODUS optimizer generator
research.

The generator concept was very successful because the input data (data model specification)
could be turned into machine code; in particudlirstrings were translated into integers, which
ensured very fast pattern matchirtdowever, the EXODUS optimizer generatsr&arch engine
was far from optimal. First, the modifications required for unforeseen algebras and their
peculiarities made it a bad patchwork of code. Second, temipation of the "MESH" data
structure (which held all logical and ysical algebra expressions explored so far) waemely
cumbersome, both in its time and space corifpds. Third,the almost random transformations
of expressions in MESH resulted in significameriead in "reanalyzing” existing plans. lact,
for larger queries, most of the time was spent reanalyzing existing plans.

The \blcano optimizer generator has solved these three problems, and includes ne
functionality not found in the EXODUS optimizer generatdie first summarize their
differences in functionality and then present a performance comparison for relational queries.

4.1. Functionality and Extensibility

There are seral important diferences in the functionality and extensibility of the EXODUS and
Volcano optimizer generators. Firstpldano makes a distinction between logicgbressions

and physical xpressions. IrEXODUS, only one type of node existed in the hash table called
MESH, which contained both a logical operator such as join and a physical algorithm such as
hybrid hash join. To retain equalent plans using merge-join and hybrid hash join, the logical
expression (or at least one node) had to be kept twice, resulting in a large number of nodes in
MESH.

Second, physical properties were handled rather haphazardly in EXODthW8.algorithm
with the lowest cost happened to deliresults with useful physical properties, this was recorded
in MESH and used in subsequent optimization decisions. Otherwise, the cost of enforcers (to
use a Ylcano term) had to be included in the cost function of other algorithms suchges mer
join. In other words, the ability to specify required physical properties and let these properties,
together with the logical expression, wdrithe optimization process was entirely absent in

11

EXODUS and has contributed significantly to thicefncy of the Volcano optimizer generator
search engine.

The concept of physical property is very powerful artkrsible. Themost obvious and
well-knowvn candidate for a pisical property in database query processing is the sort order of
intermediate results. Other properties can be defined by the optimizer implementor at will.
Depending on the semantics of the data model, uniqueness might be a physical property with tw
enforcers, sort- and hash-based. Location and partitioning in parallel and distributed systems can
be enforced with a network and parallelism operator sucho&sanb’s exchange operator
[GCDY94]. For query optimization in object-oriented systems, we plan on defining
"assembledness” of complebjects in memory as a psical property and using the assembly
operator described in [KGM91] as the enforcer for this property.

Third, the Volcano algorithm is den top-dovn; subexpressions are optimized only if
warranted. Inthe extreme case, if the only weo pursued is a transformation, a logical
expression is transformed on the logical algebval ivithout optimizing its subexpressions and
without performing algorithm selection and cost analysis for thexpubssions. IEEXODUS, a
transformation is alays folloved immediately by algorithm selection and cost analysis.
Moreover, transformations were explored whether or noy thvere part of the currently most
promising logical expression and physical plan for theradl query Worst of all for optimizer
performance, heever, was the decision to perform transformations with the highgstoted
cost impraement first. Since the expected cost imj@oent was calculated as product of a
factor associated with the transformation rule and the current cost before transformation, nodes at
the top of the expression (with high total cost) were prefeivedlower expressions. Whethe
lower expression were finally transformed, all consumer node& diowhich there were man
at this time) had to be reanalyzed creating an extremely large number of MESH nodes.

Fourth, cost is defined in much more general terms in Volcano than in the EXODUS
optimizer generator In Volcano, cost is an abstract data type for which all calculations and
comparisons are performed byaking functions provided by the optimizer implementtircan
be a simple numbee.g., estimated elapsed seconds, a structure, e.g., a record consisting of CPU
time and I/O count for a cost model similar to the one in System R [SAC793¢roadunction,

e.g., of the amount ofvailable main memory.

Finally, we kelieve that the Volcano optimizer generator is mordeasible than the
EXODUS prototype, in particular with respect to the search giratEhe hash table that holds
logical expressions and physical plans and operations on this hash table are quite general, and
would support a variety of search strategies, not only the procedure outlined in \tloaigpre
section. V& ae still modifying (extending and refining) the search stggfeand plan on
modifying it further in subsequent years and on using tieavio optimizer generator for further
research.

12

4.2. Seach Efficiency and Effectveness

In this section, we experimentally compar@cefncy and efectiveness of the mechanismailb

into the EXODUS and Volcano search engines. The example used for this comparison is a rather
small "data model" consisting of relational select and join operators only; as we will see,
however, even this small data model and query languagdéiced to demonstrate that the search
stratgy of the \blcano optimizer generator is superior to the one designed for the earlier
EXODUS prototype. The effects exposed here would beere gronger for richer and more
comple data models, (logical) query algebras, and (physica&jgion algebras.

For the experiments, we specified the data model descriptions as similarly as possible for
the EXODUS and Volcano optimizer generators. In particwar pecified the same operators
(get, select, join) and algorithms (file scan, filter for selections, sorgerj@n, hybrid hash
join), the same transformation and implementation rules, and the same property and cost
functions. Sortingwas modeled as an enforcer inolano while it was implicit in the cost
function for merge-join in EXODUS. The transformation rules permitted generating all plans
including tushy ones (composite inner inputs). The test relations contained 1,200 to 7,200
records of 100 bytes. The cost functions included both I/O and CPU costs. Hashagin w
presumed to proceed without partition files, while sorting costs were calculated based on a
single-level merge.

As a first comparison between the otweearch engines, we performedhaustve
optimizations of relational select-join queries. Figure 4 shows \theage optimization ébrt
and, to she the quality of the optimizer output, the estimatgecation time of produced plans
for queries with 1 to 7 binary joins, i.e., 2 to 8 input relations, and ayg seattions as input
relations. Solidlines indicate optimization times on a Sun SparcStation-Vetiely about
12 MIPS. Dashed lines indicate estimated plaxecaition times. Note that the y-axis are
logarithmic. Measurementfrom the EXODUS optimizer generator are netkwith O's,
\Volcano measurements are megtkwitho’s.

Optimization 10
and Estimated G-
Execution Time 1

per Query
[seconds] 0.1

o Volcano
solid Optim.

dashed Exec.
| | | | | | |
2 3 4 5 6 7 8

Number of Input Relations

0.01

Figure 4. Exhauste Qptimization Performance.

13

For each complexity leel, we generated and optimized 50 querieésr some of the more
complex queries, the EXODUS optimizer generator aborted due to lack of memorasr w
aborted because it ran much longer than the Volcano optimizer gendrattrermore, we
obsered in repeatedxperiments that the EXODUS optimizer generator measurements were
quite \olatile. Similarproblems were observed in EXODUS experiments reported in [GrD87].
The Volcano-generated optimizer performedaustve sarch for all queries with less than
1 MB of work space. The data points in Figure 4 represent only those queries for which the
EXODUS optimizer generator completed the optimization.

The search times reflectoManos nmore efficient search strafg visible in the lage
distance between the twsolid lines. For the EXODUS-generated optimizeéhe search &brt
increases dramatically from 3 to 4 input relations because reanalyzing becomes a substantial part
of the query optimization effort in EXODUS at this poinThe increase of &lcano’s
optimization costs is about exponential, whdn an almost straight line, which mirrorsaetly
the increase in the number of egalent logical algebra expressions [OnL9®or more compl&
gueries, the EXODUS’ and Volcarsodptimization times differ by about an order of magnitude.

The plan quality (shen by the estimatedxecution cost; dashed lines in Figure 4) is equal
for moderately complequeries (up to 4 input relationsfzor more compl& queries, hwever,
the cost is significantly higher for EXODUS-optimized plans, because the EXODUS-generated
optimizer and its search engine do not systematicaploee and exploit physical properties and
interesting orderings.

In summary the \blcano optimizer generator is not only more extensible, it is also much
more efficient and &ctive than the earlier EXODUS prototype. In thexnesection, we
compare our work with other related work.

5. Other Related Work

The query optimizer of the Starburst extensible-relational database management system consists
of two rule-based subsystems with nested scopes. Thesmhsystems are connected by a
common data structure, which represents an entire query and is called query graph model
(QGM). The first subsystem, called query rewrite, ges nested subqueries andndles
selection and join predicates for optimization in a second, cost-based opti@enization

during the query ngrite phase, i.e., nested SQL queries, union, outer join, grouping, and
aggra@ation, is based entirely on heuristics and is not cost-seasiSelect-project-join query
components are wered by the second optimiZerso called the cost-based optimizesich
performs rule-based expansion of select-project-join queries from relational calculus into access
plans and compares the resulting plans by estimatiteon costs [LFL88, Loh88]. The cost-
based optimizer performsigaustve sarch within certain structural boundariésr example, it

1 Actually, the cost-based optimizer \a@s all operators.However, its optimization and
algorithm choices are very limited for all but the select-project-join blocks in a query.

14

is possible to restrict the search space to left-deep trees (no composite inner), to incligtey all b
trees, or to set a parameter fopleration of some but not allusty trees. Br moderately
compl join queries, the xhaustve sarch of Stanrst's wst-based optimizer is venadt
because of its use of dynamic programminidoreover, the cost-based optimizer considers
physical properties such as sort order and creates efficient access plans that include "glue”
operators to enforce physical properties.

As we see it, there are twfundamental problems in Stamst's gpproach to xtensible
qguery optimization. First, the design of the cost-based optimizer is focused on step-wise
expansion of join expressions based on grardikar rules. The"grammar" depends on a
hierarcly of intermediate Mels (similar to non-terminals in a parsing grammar), e.g.,
commutatve join and non-commutag join, and the sets of rules and intermediatel¢eare
tailored specifically to relational join optimizatioithe problem is that it is not obviousviathe
existing rule set would interact with additional operators and expansion rbtEsexample,
which level of the hierarc is the right place for a multi-input join algorithm? Whatwne
intermediate leels (non-terminals) must be defined for the expansion grammar? In order to
integrate a n& operator into Stanrst’s cost-based optimizethe database implementor must
design a number of meintermediate hels and their /@ grammar rules.These rules may
interact with existing ones, makingyaextension of Stanlrst’s cost-based optimizer a comgle
and tedious task.\Volcanos dgebraic approach seems much more natural and easier to
understand. Mostcent work in object-oriented query optimization and some work on database
programming languages has focused on algebras and algebraic transformations, e.g. [LiD92,
ShZz90, St091, VaD91] among myaathers.

Second, in order tovaid the problems associated with addingvraperators to the cost-
based optimizernew @erators are integrated at the query rewriteelle However, query
optimization on the query weite level is heuristic; in other words, it does not include cost
estimation. Whileheuristics are sufficient for some transformations, e.g., rewriting nested SQL
gueries into join expressions, theare not sufficient for the relational operators already in
Starburst query rewrite lgel and certainly not for an extensible query optimization system in
which future algebra operators and their properties are yet wnknds an example for
insufficient optimization capabilities for existing Starburst operators, consider that optimizing the
union or intersection of N sets isry similar to optimizing a join of N relations; \wever, while
join optimization usesxhaustve warch of tree shapes and join orderings as well as sédiecti
and cost estimation, union and intersection are optimized using query rewrite heuristics and
commutatvity only. We believe that a single-leel approach, in which all algebraic egalences
and transformations are specified in a single language and performed by a single optimizer
component, is much more condegifor future research and exploration of database query
algebras and their optimization. Note that the Volcano optimizer generator will permit heuristic
transformations by suitable ranking and selection ofvésih havever, it leaves the choice to the
database implementor when andvito use heuristics vs. cost-sengitigotimization rather than
making this choice a priori as in the Starburst design.

Sciore and Sigpcriticized earlier rule-based query optimizers and concluded that modularity
is a major requirement for extensible query optimization systems, e.g., in the rule set and in the

15

control structures for rule application [ScS9Uhe different tasks of query optimization, such as

rule application and selectivity estimation, should be encapsulated in separate and cooperating
"experts.” Mitchellet al. recently proposed a very similar approach for query optimization in
object-oriented database systems [MZD92]. While promising as a conceptual approach, we feel
that this separation can be sustained for some aspects of query optimizatiorvéarndd# do

so in the abstract data types for cost etc. in the Volcano optimizer genenattovg bae found

it extremely hard to maintain encapsulation of all desirably separate concerns in an actual
implementation.

Kemper and Moerétte designed a rule-based query optimizer for the Generic Object Model
[KeM90a]. The rules operate almost entirely on path expressions (e.g.,
emplo/ee.department.floor) by extending and cutting them to peri@ct®e wse of access
support relations [EM90b]. Whilethe use of rules makes the optimizer extensible, it is not clear
to what extent these techniques can be used fierelit data models and for differemxieeution
engines.

6. Summaryand Conclusions

Emeging database application domains demand not only high functionality but also high
performance. @ satisfy these tw requirements, the Volcano project providedicednt,
extensible tools for query and request processing, particularly for object-oriented and scientific
database systems/Me b not propose to reintroduce relational query processing inkd- ne
generation database systems; instead, ok @wn a ne kind of query processing engine that is
independent of andata model. The basic assumption is that higletlguery and request
languages are and will continue to be based on sets, other bulk types, predicates, and operators.
Therefore, operators consuming and producing sets or sequences of items are the fundamental
building blocks of next-generation query and request processing systems. In other words, we
assume that some algebra of sets is the basis of query processing, and our research tries to
support ag agebra of collections, including heterogeneous collections andy-s@ated
algebras. ®6rtunately dgebras and algebraic egdience rules are a very suitable basis for
database query optimizatioMMoreover, sts (permitting definition and exploitation of subsets)

and operators with data passed (or pipelined) between them are also the foundations of parallel
algorithms for database query processinfhus, our fundamental assumption for query
processing in extensible database systems are compatible with high-performance parallel
processing.

One of the tools provided by the Volcano research isnaapéimizer generatordesigned
and implemented to further exploretensibility, search algorithms, &fctiveness (i.e., the
quality of produced plans), heuristics, and time and spdegenty in the search engine.
Extensibility was achieed by generating optimizer source code from data model specifications
and by encapsulating costs as well as logical arydigdl properties into abstract data types.
Effectiveness was achied by permitting exhaustve sarch, which will be pruned only at the
discretion of the optimizer implementorEfficiengy was achieed by combining dynamic
programming with directed search based oyspal properties, branch-and-bound pruning, and
heuristic guidance into a we search algorithm that we wa alled directed dynamic

16

programming. A preliminary performance comparison with the EXODUS optimizer generator
demonstrated that optimizers built with the Volcano optimizer generator are much ficoeatef
than those built with the EXODUS prototypé&Ve hope that the ne Volcano optimizer
generator will permit ourwn research group as well as others toeldp more rapidly ne
database query optimizers forwvebdata models, query algebras, and database management
systems. Th&blcano optimizer generator has been used velde optimizers for computations
over scientific databases [WoG93] and foex@is Instruments’ Open OODB project [BMG93,
WBT92], which introduces a me"materialize" or scope operator that captures the semantics of
path expressions in a logical algebxaression. Botlof these optimizers ka recently become
operational. Moreeer, the Volcano optimizer generator is currently beinguwated by seeral
academic and industrial researchers in three continents.

In addition to combining an &dient implementation of xhaustve sarch based on
dynamic programming (as also found in the cost-based component of therStarelational
optimizer) with the generality of the EXODUS optimizer generator and the more natural single-
level algebraic transformation approach, the Volcano optimizer generator has a number of ne
features that enhance its value as a sofwdeelopment and research tool beyond all earlier
extensible query optimization efforts.

First, the choice when and Wwoto use heuristic transformations vs. cost-sevsiti
optimization is not prescribed or "wired in.In EXODUS, cost analysis wasways performed
after a transformation; in Stantst, one leel can only perform heuristic optimization while the
other level performs cost-sensite eXhaustve sarch. Thusthe Volcano optimizer generator has
removed the restrictions on the search stggtémposed by the earlier extensible query optimizer
designs.

Second, optimizers generated with the Volcano optimizer generator use physical properties
very efficiently to direct the searctRather than optimizing an expression first and then adding
"glue” operators and their cost to a plan (the Starburst approach),otb@n® optimizer
generatoss arch algorithm immediately considers which physical properties are to be enforced
and can be enforced by which enforcer algorithms, and subtracts the cost of the enforcer
algorithms from the bound that is used for branch-and-bound pruning. Thusplitend/
optimizer generator promises to beee more efficient in its search and pruning than the
relational Starburst optimizer.

Third, for binary (ternaryetc.) operations that can benefit from multiple, alteveati
combinations of pysical properties, the subexpressions can be optimized multiple tiroes.
example, ag sort order can be exploited by an intersection algorithm based on merge-join as
long as the tw inputs are sorted in the samayw Although the same consideration applies to
location and partitioning in parallel and distributed relational query processing, no earlier query
optimizer has provided this feature.

Fourth, the internal structure for eggdience classes is sufficiently modular axteasible
to support alternate sarch strategies, far beyond the parameterization of rule condition codes,
which can be found to a roughly similar extent in Starburst and EXODMS ae eploring
several directions with respect to the search sgtaamely preoptimized subplans, learning of

17

transformation sequences, an altergteven more parameterized search algorithm that can be
"switched" to different existing algorithms, and parallel search (on shared-memory machines).

Finally, the consistent separation of logical and/gibal algebras makes specification as
well as modifications at eithend particularly easy for the database and optimizer implementor
and maks the search engine veryig@ént. For example, the introduction of awmenon-trivial
algorithm such as a N-ary join (rather than binary joins) requires oneoomtplementation
rules in Volcano, whereas the design of Siests cost-based optimizer requires reconsideration
of almost the entire rule seWhile the separation of logical and physical algebras was already
present in the EXODUS rule language, th@ceno design also exploits this separation in the
search engine, which makes extending the code supplied by the optimizer implementor (which
sometimes must inspect the internal data structures, e.g., in rule condition code) significantly
easier to write, understand, and modifg summary the \blcano optimizer generator is a much
more etensible and useful research tool than both the Starburst optimizer and the EXODUS
optimizer generator.

Acknowledgements

Jim Martin, David Maierand Guy Lohman hae made valuable contributions to this research.
Jim Martin, Guy Lohman, Barb Peters, Rick Cole, Diane Davison, and RichalmeWicz
suggested numerous impements to drafts of this papeie thank JoseBlakeley and his
colleagues até@xas Instruments for using theano Optimizer Generator in the Open OODB
project. —This research was performed at the udrsity of Colorado at Boulder with partial
support by NSF withwards IRI-8805200, IRI-8912618, and IRI-9116547, ARRith contract
DAABO07-91-C-Q518, andéixas Instruments.

References

[BMG93] J.A. Blakeley, W. J. McKenna, and G. Graefe, Experiences Building the Open OODB Query Optimiz-
er, Proc. ACM SGMOD Conf., Washington, DC, May 1993, 287.

[Gra87] G.Graefe, Software Modularization with the EXODUS Optimizer GenerdiiE Database Eng.
Bull. 10, 4 (December 1987), .

[GrD87] G. Graefe and D. J. DeWitt, The EXODUS Optimizer Geneydtoomc. ACM SGMOD Conf., San
Francisco, CA, May 1987, 160.

[GCD94] G.Graefe, R. L. Cole, D. L. Davison,.\W. McKenna, and R. H. @hiewicz, Extensible Query Opti-
mization and Parallel Execution in Volcano, Morgan-Kaufman, San Mateo, CA, 1994.

[KGM91] T. Keller, G. Graefe, and D. MaiegrEfficient Assembly of CompkeObjects, Proc. ACM SGMOD
Conf., Derver, CO, May 1991, 148.

[KeM90a] A.Kemper and G. Moewtte, Advanced Query Processing in Object Bases Using Access Support Re-
lations,Proc. Int’'l. Conf. on Very Large Data Bases, Brisbane, Australia, August 1990, 290.

[KeM90b] A.Kemper and G. Moeudtte, Access Support in Object Basesyc. ACM SGMOD Conf., Atlantic
City, NJ, May 1990, 364.

[LFL88] M. Lee, J. C. Frgag, and G. Lohman, Implementing an Interpreter for Functional Rules in a Query
Optimizer,Proc. Int’l. Conf. on Vlery Large Data Bases, Los Angeles, CA, August 1988, 218.

[LiD92] D. F. Lieuwen and D. J. Deltt, A Transformation-Based Approach to Optimizing Loops in Database
Programming LanguageBroc. ACM SGMOD Conf., San Diego, CA, June 1992, 91.

[Loh88] G. M. Lohman, Grammakike Functional Rules for Representing Query Optimization Altevesfi
Proc. ACM SGMOD Conf., Chicago, IL, June 1988, 18.

[MDK94] D. Maier, S. Daniels, TKeller, B. Vance, G. Graefe, and.\cKenna, Challenges for Query Process-
ing in Object-Oriented Databases, @uery Processing for Advanced Database Applications,

18

[MZD92]
[OnL90]
[ScS90]

[SACT79]

[Shz90]
[StO91]
[VaD91]
[WBT92]

[WoG93]

J. C. Freytag, G. Vossen and D. Mded.), Mogan-Kaufman, San Mateo, CA, 1994, 337.

G. Mitchell, S. B. Zdonik, and U. Dayal, An Architecture for Query Processing in Persistent Object
StoresProc. Hawaii Conf. on System Sciences, Vol. 2, January 1992, 787.

K. Ono and G. M. Lohman, Measuring the Complexity of Join Enumeration in Query Optimization,
Proc. Int’l. Conf. on Very Large Data Bases, Brisbane, Australia, August 1990, 314.

E.Sciore and J. Sieg, A Modular Query Optimizer Gener&ac. |EEE Int’'l. Conf. on Data Eng.,

Los Angeles, CA, February 1990, 146.

P G. &linger M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, andd Price, Access Path Selection

in a Relational Database Management Sysferoc. ACM SGMOD Conf., Boston, MA, May-June
1979, 23. Reprinted in M. Stonebrak Readings in Database Sys., Man-Kaufman, San Mateo,
CA, 1988.

G.M. Shav and S. B. Zdonik, A Query Algebra for Object-Oriented DatabaBes;. |IEEE Int'l.

Conf. on Data Eng., Los Angeles, CA, February 1990, 154.

D.D. Straube and M..TOzsu, Execution Plan Generation for an Object-Oriented Data M@,
Conf. on Deductive and Object-oriented Databases, Munich, Germay December 1991.

S.L. Vandenbeay and D. J. De\itt, Algebraic Support for CompteObjects with Arrays, Identityand
InheritanceProc. ACM SGMOD Conf., Derver, CO, May 1991, 158.

D. Wells, J. A. Blaleley, and C. W Thompson, Architecture of an Open Object-Oriented Database
Management Systerti-EE Computer 25, 10 (October 1992), 74.

R.H. Wolniewicz and G. Graefe, Algebraic Optimization of Computations Scientific Databases,
Proc. Int’l. Conf. on Very Large Data Bases, Dublin, Ireland, August 1993, 13.

XiX

Table of Contents

F Y 0131 = T P PP PP PUPRRPO 1.
TaTo = =T 4L PP OTPRTR 1.

O oo (U1t i o o NSO PP PPROPPP

2. The Outside Viw of the Volcano Optimizer GENETALQL............coviuiiieiiiiiiee e 2
A B Tt o g T o] g (o o = PO P U PUPPRPRPPPPPRPN 3
2.2. Optimizer Generator Input and OptiMizer OPEIatiON...........ceiiiiiiieieiiiiite e 4

I TS T= = o o I =t o] = PSPPI 6

4.1. Functionality and EXIENSIDIILY.eeeiiiiiiiiie it e et e e e e 11
4.2. Search Efficierytand EffECIVENESScooiiiiiiiiiiiiie e e 13

5. Other REIALEA YIKeeeiieeiiiiei ettt e ettt e e e s sttt e e e st b et e e e s aabbeeeessbbeeeeenae 14,

6. SUMMArY AN CONCIUSIONS.ciiiiiiiiie ittt ettt e e s bbbt e e s s bbbt e e s e aabb e e e e s anbbee e e e e nnnees 16
ACKNONIEAGEIMENTS ...eeiiiiiiieie ittt e et e e e ot bt e e s st et e e e s s bb et e e e e aabb et e e s aabbeeeeesanbbeeeesanbbeeeeeans 18...

RN (=] =T ot PO PP OTP PP 18....

List of Figures

Figure 1. The GeneratOBRAAIGMuueiiiieeeiiiiiiiiiiee e e e e e e e e s s s e e e e e aee et s s saaenr e e e e eeaaeaessaassnnrnrrnrereeaeaeans 2

Figure 2. Outline of the Search AlGOrithm...........coooi i 8
FIgure 3. ASSOCIALIVIEY RUIE............euiiiiiiiee e e s e e e e e e e e s e s et e e e et eeaesesssssnstntnneeeeaeeeesnannns 9
Figure 4. Exhauste Qptimization PerfOrManCEe.........uuiiec e e e e e e e e e e e e e e e e e 13

