
Some High Level Language Constructs for Data
of Type Relation

JOACHIM W. SCHMIDT

Universitiit Hamburg, West Germany

For the extension of high level languages by data types of mode relation, three language con-
structs are proposed and discussed : a repetition statement controlled by relations, predicates
as a generalization of Boolean expressions, and a constructor for relations using predicates.
The language constructs are developed step by step starting with a set of elementary opera-
tions on relations. They are designed to fit into PASCAL without introducing too many addi-
tional concepts.

Key Words and Phrases: database, relational model, relational calculus, data type, high
level language, nonprocedural language, language extension
CR Categories: 4.22, 4.33, 4.34

/
_J’

1. INTRODUCTION ,’ /
/

A certain class of programming problems involves the processing of data with the
following properties: there is a large amount of data, the data has internal connec- ,, /
tions, and the data must be made available to many users. /

Since Codd’s original paper [5], relations have been increasingly used
solution of such database programming problems.

The “classical” language constructs for the processing of data organized around
relations are by now accepted to be essentially: (a) primitive instructions for
altering relations at the level of individual tuples: insertion, deletion, and modi-
fication; and (b) powerful retrieval facilities operating on relations at the level of
sets of tuples: relational calculus- and algebra-oriented query languages.

/

/

/

In recent years numerous data sublanguages have been proposed, and some
implemented, which contain these constructs to a greater or laer extent. They
differ from one another mainly in the conceptions of what usw friendliness means
12, 4, 171.

Copyright @ 1977, Association for Computing Machinery, Inc. General permission to repub-
lish, but not for profit, all or part of this material is granted provided that ACM’s copyright
notice is given and that reference is made to the publication, to its date of issue, and to the
fact that reprinting privileges were granted by permission of the Association for Computing
Machinery.
A version of this paper was presented at the International Conference on the Management of
Data, 1977, in Toronto, Canada-an annual conference of ACM SIGMOD.
Author’s permanent address: Universitat Hamburg, Institut fur Informatik, Schliiterstrasse
70, D-2099 Hamburg 13, West Germany. Present address: University of Toronto, Computer
Systems Research Group, Toronto M5S lA4, Canada.

ACM Transactions on Database Systems, Vol. 2, NO. 3, September 1977, Pages 247-261

_ __-L_ .--I-.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F320557.320568&domain=pdf&date_stamp=1977-09-01

248 . Joachim W. Schmidt

Traditionally a database with its associated data language is seen as an inde-
pendent system; data is interchanged with users or with programmed systems
through fixed interfaces in the form of I/O areas. Problems which arise from the
integration of database language constructs, such as a data structure relation, in high
level languages have up to now seldom been investigated [7, 1, 141. Such investiga-
tions are of interest from at least two points of view: first for the extension of
existing high level languages, and second for the further development of data-
base concepts themselves, in particular the relation concept.

The currently prevalent high level programming languages have no constructs
for the processing of large amounts of interrelated data. The file concept does not
offer a general solution to this problem; files may be able to hold large quantities of
data but the connections between data elements are inadequately handled, both
at the level of high level language operations and at the level of access paths. As
demonstrated by the example of the programming language SAIL [S] which contains
ALGOL 60 and LEAP [12] data structures, there exists quite clearly a need for an
algorithmic language with efficient constructs for handling intricately connected
data.

Such investigations can also serve as a vehicle for the further development of
the relation concept itself. The necessity for such development shows up, for ex-
ample, in the previously mentioned difference in power between altering instruc-
tions and retrieval facilities. Whereas for a single retrieval command, all connec-
tions between relation tuples which are necessary for the answer to a query are
evaluated, only a single tuple in a single relation can be inserted, deleted, or up-
&ted by an altering instruction. The user must therefore, in general, code a con-
sis\nnt database alteration transaction as a sequence of such altering instructions,
each tiecting a single relation. The user thereby bears most of the responsibility
for the central problem of the integrity of the database.

A similar problem situation in general purpose programming languages led to the
development of the concept of abstract data types [lo]. A stack variable, for ex-
ample, COUN be implemented in a high level programming language by means of an
array variable, a ‘Boolean variable, and an integer variable. These variables must
be altered consitiently when the value of the stack variable is changed (e.g. by
push or pop). We could analogously define alterations in a database as operations
on abstract data typss and implement them as procedures on relations. In more
recent work, Schmid asd Swenson [13] for example, the beginnings of such a de-
velopment can be discerned. The further development of database language con-
structs, however, cannot be discussed in the limited context of data sublanguages.
On the contrary, this assumes to a great extent the concepts of high level program-
ming languages.

These tendencies will not be further discussed in this paper (see e.g. [15]). In
Section 2 the definition of types of mode relation and the declaration of relation
variables are briefly described, together with the elementary read and write opera-
tions for relations. Section 3 introduces a repetition statement controlled by a rela-
tion variable. The generalization of Boolean expressions to predicates is handled in
Section 4. In Section 5 the concept of a generalized relation constructor is discussed.
Finally Section 6 outlines the state of the implementation and some further de-

ACM Transactions on Database Systems, Vol. 2, No. 3, September 1977.

Some High Level Language Constructs for Data of Type Relation l 249

velopment. It should be noted that the language constructs have been designed to
fit into PASCAL [16] without the introduction of too many additional concepts.

2. ELEMENTARY OPERATIONS ON RELATIONS

The definition of data types of mode relation is based upon data types of mode
record. The value of a variable of a particular relation type is a set of tuples, each
of which is in turn of the record type laid down in the definition of the relation type.
The fields of these records will be taken to be of scalar type or of type string (“flat”
records). Furthermore these types are presumed to be ordered types.

A second component of the definition of a relation type is the designation of
certain fields of the relation tuples as a key. A key list characterizes a particular
part of the tuple by enumerating the corresponding field identifiers. For these
fields it holds that among the tuples of the relation a particular value assignation
occurs at most once. The values of the key fields therefore uniquely determine a
tuple in the relation. An ordering of the key values is defined by the presumed
ordering on the values of the individual key fields and by the order of the key field
identifiers in the key list.

Example 1. If employees are characterized by the attributes employee number
(unique), employee status, and employee name, then we can define relation vari-
able employees as follows:

type erectype = record enr, estatus:integer; enume:string end;
ereltype = relation (enr) of erectype;

var employees:ereltype;

Along with data types of mode relation, operations are defined which allow values
of relation variables to be altered and to be read tuple by tuple.

2.1 Elementary Altering Operations

A value change of a relation variable can occur through insertion, deletion, or modi-
fication of tuples. These operations are not in fact “elementary” insofar as through
them not single tuples, but whole sets of tuples (i.e. again a relation variable),
can be inserted, deleted, or modified. However, these operations alter at any given
time the value of only one relation variable.

The insertion operator :+ brings about the insertion of tuples into the target
operand to its left, dependent on the source operand to its right:

rell :+ rel2;

Source and target operands are relation variables of the same type. Into rell are
inserted copies of those tuples of reZ2 whose key values do not already occur in
any tuple of rell. The source operand rel2 remains unchanged.

The deletion operator :- brings about the deletion of tuples in the target operand

ACM Transactions on Database Systems, Vol. 2, No. 3, September 1977.

250 . Joachim W. Schmidt

dependent on the source operand:

rell :- rel2;

Source and target operands are relation variables of the same type. From rell are
deleted those tuples also contained in rel2. The source operand reZ2 remains un-
changed.

The replacement operator :& brings about the replacement of tuples in the target
operand dependent on the source operand:

rell :& re12;

Source and target operands are relation variables of the same type. Each tuple of
rell whose key value occurs in a tuple of re12 is replaced by a copy of the corre-
sponding tuple in rel2. The source operand .cmains unchanged. Note that key
values cannot be changed with the aid of the replacement operator.

The assignment operator := assigns relation values between relation variables
of the same type:

rell := reE2;

A generalization of admissable source operands towards relational expressions will
be treated in Section 5.

2.2 An Elementary Relation Constructor

An anonymous 1-tuple relation can be constructed from a record variable with the
aid of the elementary relation constructor [..I. Of course any combination of fields
fulfills for this relation the requirements for a key; these relations are therefore
type-compatible with every relation variable whose type definition is based on the
type of the record variable, e.g.

rel := [ret];

The empty relation is denoted correspondingly by [1.
Example 2. A tuple with employee number 2, employee name Nessie, and em-

ployee status 1 is to be inserted in the relation employees.

type erectype = record enr, estatus:inleger; ename:slring end;
ereltype = relation (em) of erectype;

var erec:erectype;
employees:ereltype;

begin .

erec.enr := 2;
erec.estalus := 1;
erec.ename : = ‘nessie’;
employees :+ [erec]

end.

ACM Transactiona on Database Systems, Vol. 2, No. 3, September 1977

Some High level language Constructs for Data of Type Relation l 251

2.3 Elementary Retrieval Operations

Two standard procedures low(reZ) and next(reZ) are defined for the tuple-wise
reading of relation variables. Furthermore the Boolean function aor(reZ) (all (f
relation) and for each relation an implicitly declared buffer variable reZ’/’ are avail-
able.

The tuple of the relation rel with the lowest key value is assigned to the buffer
reZT by the procedure call low(reZ). The tuple with the next highest key value is
assigned to reZ1 by the procedure call next(reZ). If such a tuple does not exist then
aor(reZ) becomes true and reZT becomes undefined.

Example 3. Find those employees with the status of an assistant professor
(employee status 2).

Solution 3.1.

type erectype = record enr, estatus:integer; enume:string end;
ereltype = relation (enr) of erectype;

var employees, result:ereltype;
begin .

result := [1;
low (employees) ;
while not aor(employees) do
begin if employees r .eslatus = 2 then result :+ [employees f 1;

next (employees)
end

end.

The solution method underlying this example program accesses relations tuple-
wise and in order, in the main controlled by the user. It is not generally satisfying
for several reasons:

The ordering of tuple access by increasing key value is unnecessary from the
point of view of program logic.

With respect to problem orientation the language constructs available for rela-
tions up to now are inadequate; this rapidly becomes evident with more complex
examples. The above program is a solution in terms of the f11c concept and not in
terms of relational databases.

For particular problems these elementary constructs are insufficient, e.g. nested
loops accessing the same relation cannot be programmed.

The notation could be more concise.
There is little possibility for automatic optimization of accesses, for example by

free choice of ordering or by processing of sets of tuples.

In the following sections we will develop step-by-step language constructs which
should to a great extent overcome such objections.

3. THE REPETITION STATEMENT foreach

The foreach statement has the general form:
(foreach statement) : : = foreach (control record variable)

in (range relation variable)
do (statement)

ACM Transactions on Database Systems, Vol. 2, No. 3, September 1977.

252 . Joachim W. Schmidt

The execution of a statement may be repeated with the aid of the foreach state-
ment. For each repetition the control variable is assigned an arbitrary new tuple
from the range relation until all tuples of the relation have been used. The control
variable is declared implicitly to have the same record type that the range relation
is based on. The scope of the control variable definition is the statement following
do; within this scope the key values of the control variable and the range relation
must not be altered. By using the foreach statement the solution for Example 3
becomes :

Solution 3.2.

(type de$nitions and variable declarations as in 3.1.]

begin .

result := [1;
foreach erec in employees do

if erec.status = 2 then result :+ [erec]
end.

For a further example we introduce the relation timetable listing lectures held by
employees and described by attributes employee number and course number,
together with day, time, and place of each lecture.

Example 4. Find all those employees who lecture on Fridays.
Solution 4.1.

type erectype = record enr, estatus:integer; enamezstring end;
ereltype = relation (enr) of erectype;
trectype = record tenr, tcnr, ttime:integer;

t&y, troom:string end;
treltype = relation (tenr, tcnr, tday) of treetype;

var employees, result: ereltype;
timetable: treltype;

begin .

result := [1;
foreach erec in employees do

foreach tree in timetable do

end.

if (erec.enr = trec.tenr) and (trec.tduy = ffriday’)
then result :+ [erec]

If we look at the example and its solution more closely we notice that:
The inner loop with range relation timetable is in general traversed too often;

that is, whenever an entry for a particular employee’s lecture held on Friday has
been found, the remainder of the relation timetable is nevertheless processed.

If an employee lectures several times on a Friday, the corresponding employee
record is inserted several times into the result. By virtue of the definition of the
insertion operator this does not, however, affect the value of the target operand.

ACM Transactions on Database Systems, Vol. 2, No. 3, September 1977.

Some High level language Constructs for Data of Type Relation l 253

It would also be possible to avoid repeated insertions quite easily by programming
an extra exit from the loop. In view of the developments in the following section,
and for didactic reasons, we shall not bother to do this here.

The inner loop is only necessary to test a condition; in this particular case a
condition on the value of the control variable tree. The control variable erec on
the other hand is also needed for the construction of the result relation.

This state of affairs is more evident.in the following solution for Example 4:
Solution 4.2.

itype definitions as in 4.1.)

var employees, result:ereltype;
ti&etable:keltype; --
some-tree-in-timetable: boolean;

begin .

result := [1;
foreach erec in employees do
begin some-tree-in-timetuble : = false;

foreach tree in timetable do
some-tree-in-timetable := some-tree-ktimetable 01
(erec.enr = trec.tenr) and (trec.tday = ‘jrickzy’);

if some-tree-in-timetable then result :+ [erec]
end

end.

The additional exit from the inner loop is again omitted for didactic reasons.
Example 5. Find all employees who give no lectures.
This example contains a universal condition.
Solution 5.1.

itype definitions as in 4.1.)

var employees, result:ereltype;
timetable: treltype;
all-trec-in-timetable: boolean;

begin .

.
result := [1;
foreach erec in employees do
begin all-tree-in-timetable : = true;

foreach tree in timetable do
all-tree-in-timetable := all-trec-in-timetable and (erec.enr # trecdenr) ;

if alLtrec-in-timetable then result :+ [erec]
end

end.

ACM Transactions on Database Systems, Vol. 2, No. 3. September 1977.

254 9 Joochim W. Schmidt

It seems natural for such problems, in which relations are used in testing one
or all of their tuples against a certain condition, not to use repetition constructs
but to introduce a special construct more related to this problem.

4. PREDICATES OVER RELATIONS

Examples 4 and 5 each require two nested loops. However, in both cases the outer
loop and the inner loop have quite different significances in the logic of the program.

The outer loop over the range relation employees uses a logical condition evaluated
by means of the inner loop-this is especially clear in Solutions 4.2 and 5.1. In both
examples the condition governs the insertion of the value of the outer control
variable into the result relation. Consequences will be discussed in Section 5.

The inner loop over the range relation timetable evaluates this condition. The
condition itself is respectively an or connection (Example 4) or an and connection
(Example 5) of Boolean terms involving tuples of the relation timetcdde, and is
implemented by the foreach statement.

In the context of predicate logic these conditions are first-order predicates. This
is more evident if one introduces range coupled quantifiers, i.e. quantifiers for which,
together with the control variable (bound variable), the scope over which its
value ranges must also be given (analogous to the foreach statement).

Predicates over relations will therefore be defined thus:

(predicate) : := (quantifier) (control record variable)
in (range relation variable)

((logical expression))
(logical expression) : := (term) 1 (term) (logical operator) (logical expression)
(quantifier) ::= some 1 all
(logical operator) ::= and 1 or

Terms consist of components of the control variable, program variables, or con-
stants, connected by the relational operators = , < , > , #, 5, 2 ; terms may also
be predicates.

The implicitly declared control variable of the predicate is again of that record
type in the range relation declaration.

4.1 The Existential Quantifier some

The predicate

some ret in rel ((logical expression))

is true iff at least one value of the control variable ret makes the logical expression
true. The values of the control variable are defined by the tuples of the range re-
lation re2. In general the logical expression will contain apart from bound variables
further program variables and constants.

The solution for Example 4 using the some quantifier now looks like this:

ACM Transactions on Database Systems, Vol. 2, NO. 3, September 1977.

Some High level language Constructs for Data of Type Relation 255

Solution 4.3.

idji ‘t’ e n2 sons and declarations as in 4.1.)

begin .

result := [1;
foreach erec in employees do

if some tree in timetable ((erec.enr = trecdenr) and (treeday = ifriday’))
then result :-I- [erec]

end.

The tiresome problem of an additional exit from the loop has now disappeared
for the user, and has been shifted on to the implementor responsible for the efficient
implementation of predicates. An efficient implementation can above all exploit
the fact that inside a predicate individual tuples of the range relation are not used
as statement variables. The sequential processing of individual tuples can there-
fore be replaced by processing tuple sets in parallel. Comparing the three solutions
developed for Example 4, we see that:

Solution 4.1, “while not aotftimetable) do,” describes a sequential tuple-wise
processing ordered by key values.

Solution 4.2, “foreach tree in timetable do,” proceeds sequentially and tuple-
wise but with no specific ordering.

Solution 4.3, “some tree in timetable,” can be implemented by processing tuple
sets in parallel.

If one considers that these tuple sets arc so large in practice that they must be kept
on secondary storage, these differences are highly significant.

4.2 The Universal Quantifier all

The predicate

all Tee in rel ((logical expression))

is true iff all values of the control variable WC make the logical expression true.
The values of the control variable are defined by the tuples of the range relation
rel.

Using the all quantifier, the solution to Example 5 can be written thus:
Solution 5.2.

&i ‘t’ e 722 sons and declarations as in 5.1.]

begin .

result := [1;

ACM Transactions on Database Systems, Vol. 2, No. 3, September 1977.

256 . Joachim W. Schmidt

foreach erec in employees do
if all tree in timetable (erec.enr f trec.tenr)
then result :+ [erec]

end.

4.3 Nested Quantifiers

Predicates may contain several quantifiers. For an appropriate example we in-
troduce a third relation that describes courses by their attributes course number
(unique), course level, and course title.

Now an extension to Example 5:
Example 6. Find those employees who give no lectures above the first year

(course level 1);
This example requires both a universal and existential condition.
Solution 6.1.

type erectype = record enr, estatus:integer; enume:string end;
ereltype = relation (enr) of erectype;
trectype = record tenr, tcnr, ttime:integer;

May, troom:string end;
treltype = relation (tenr, tcnr, tday) of trectype;
crectype = record cnr, clevekinteger; cname:string end;
creltype = relation (cnr) of crectype;

var employees, result: ereltype;
timetable: treltype;
courses:creliype;

begin .

result := [1;
foreach erec in employees do

if all tree in timetable ((erec.enr # trec.tenr) or
some crez in courses ((trechnr = crecmr) and (crec.cZevel = 1)))

then result :+ [erec]
end.

It becomes evident with examples like this that data elements in a database are
typically not processed in isolation but together with their mutual logical con-
nections: A particular tuple of the relation employees is only further processed when
it stands in a particular relation to the tuples of timetable and furthermore there is
a particular tuple in the relation courses such that

The actual processing of the tuples is so far identical in all examples: Dependent
upon a predicate they are inserted into the result relation or not. The solutions to
a large class of problems in retrieving data from databases can be programmed in
this way.

We are now ready to go one step further and develop a specific language con-
struct for this standard programming problem based on the constructs introduced
so far.

ACM Transactions on Database Systems, Vol. 2, No. 3, September 1977.

Some High Level Language Constructs for Data of Type Relation 257

5. GENERALIZING THE RELATION CONSTRUCTOR

With the concepts developed so far the value of a relation variable can be altered
by deleting, inserting, or modifying tuples and by assigning a relation-valued ex-
pression. These expressions are, however, up to now limited to single relation vari-
ables and to the elementary relation constructor introduced in Section 2.2. The
elementary constructor is only capable of making a 1-tuple relation [CC] from a
record variable Z. This restriction has ‘led, in all the examples handled so far, to
the construction of new relations according to the following schema: tuple-wise
access to the source relation, sequential processing of these tuples as records, and
tuple-wise construction of the result relation. On the other hand, in the quanti-
fiers and the logical expressions we already have the necessary prerequisites for a
generalization of the relation constructor along the lines

[z in X: P(z, r, s, . ..)I

where z is the free variable which describes the result tuple, X is a range relation
which holds the possible value tuples for 2, and P is some logical expression which
depends on the free variable, and possibly on further bound variables r, s, etc.,
and on constants.

5.1 Construction of Subrelations

A first step in generalizing the relation constructor leads to the definition

(general relation constructor) ::= [each (control record variable)
in (range relation variable):

(logical ezpression)]

The implicitly declared control variable is again of the same record type as that of
the range relation. The logical expression has the usual logical and relational
ope&ors, and it may also contain quantifiers. As operands, the logical expression
may contain components of the free control variable of the constructor and pos-
sibly of the bound variables of predicates, as well as program variables and con-
stants.

With the aid of the general relation constructor, the solutions of the previous
examples may be further simplified:

Solutions 3.3, 4.4, 5.3, 6.2.

--

type erectype = record enr, estatus:integer; ename:string end;
ereltype = relation (enr) of erectype;
trectype = record tenr, tcnr, ttime:integer;

Hay, troom:string end;
treltype = relation (tenr, tcnr, &lay) of trectype;
crectype = record cnr, clevel:integer; cname:string end;
creltype = relation (cnr) of crectype;

var employees, result3, result4, result5, result6:ereltype;
timetable: treltype;

ACM Tramactions on Database Systems, Vol. 2, NO. 3, September 1977.

258 l Joachim W. Schmidt

courses:creltype;
begin .

.

result3 := [each erec in employees:erec.estatus = 21;
result4 := [each erec in employees:some tree in timetable ((erec.enr = trec.tenr) and

(trecdday = ‘friduy’))] ;
result5 := [each erec in employees:all tree in timetable (erecenr # trec.tenr)];
result6 := [each erec in employees:all tree in timetable ((erec.enr # trec.tenr) or

some wee in courses ((tree&w = wec.cnr) and (crec.cleveZ = l)))]
end.

In the proposed form the relation constructor can only create subrelations from
one relation variable. The general case of the construct,ion of relations with the
aid of several free variables and arbitrary result tuples made up of their components
will be treated in the next section.

5.2 The General Relation Constructor

In its most general form a relation constructor can be defined using several free
variables. Its value is a relation defined by tuples whose components come from
components of the free variables of the constructor, and maybe program variables
and constants :

(general relation constructor) : : = [each ((target component list})
for (control record variable list)
in (range Telation variable list):

(logical expression)]
(target component list) ::= (target component) 1 (target component); (target component list)
(target component) ::= (control record component variable) 1 (variable) 1 (constant) 1 empty

The correspondence between the control variables and the range variables is
implied by their position in the respective lists. The previously defined relation
constructor of Section’5.1 is a special case of this more general constructor.

A fourth relation will be introduced for the last example; this relation contains
the publications of the employees, described by the title, the year of publication,
and, to identify the associated employee, an employee number.

Example 7. For those employees who give lectures, find the names and the
title and year of their publications.

Solution 7.1.

type erectype = record enr, estatus:integer; ename:string end;
ereltype = relation (em) of erectype;
prectype = record ptitle:string; pyear, penr:integer end;
preltype = relation (ptitle, pew) of prectype;
trectype = record tenr, tcnr, ttime:integer;

tday, troom:string end;
treltype = relation (tenr, tcnr, t&y) of trectype;

var employees: ereltype;
papers:preltype;

ACM Transactions on Database Systems, Vol. 2, No. 3, September 1977.

Some High Level Language Constructs for Datasof Type Relation 259

timetable: treltype;
result:relation (rname, rtitle) of

record rname, rtitlezstring; ryeur:integer end;
begin .

result := [each (erec.enume; prec.ptitle; prec.pyear)
for erec, prec in employees, papers:
(prec.penr = erec.enr) and

end.
some tree in timetable (erec.enr = trec.tenr)]

Specific problems with constructed relations, such as the definition of their
keys and the possibility of checking keys at compilation time, will be treated else-
where.

The relational constructor has certain advantages over the previous methods of
solution :

It is a nonprocedural (very high level) language construct, in the sense that the
user does not program a procedure which produces the result, but gives merely a
declaration of certain properties of the result.

The notation is concise and keeps the important information textually to-
gether. This increases the readability for the user and facilitates a more efficient
implementation.

The relation constructor may be given well-defined semantics in a similar way
to predicate calculus.

The set of meaning preserving transformations of constructors is, in the: context
of predicate calculus, comprehensible. The freedom in the execution of the con-
structor thus obtained is very desirable for optimization.

At this point similarities to Codd’s data sublanguage ALPHA [6] should be stressed.
In particular the representation of queries in this calculus oriented language is
closely akin to the relational constructor presented here. However, Codd considers
relational calculus as an application of predicate calculus, whereas the relational
constructor has been developed from, and integrated in, the concepts of a pro-
gramming language.

6. SYSTEM IMPLEMENTATION AND FURTHER DEVELOPMENT

The various language constructs treated here are being incorporated into the PASCAL
compiler for the DECsystem-10 [9] of the Institute for Informatics at Hamburg
University. Apart from the necessary modifications to the compiler, a run-time
system is being produced for the execution of the relational constructor and the
predicates. This basically consists of an algorithm derived from that of Palermo
[II] with additional optimization and supported by some advanced access methods.
A first version of the system is expected to be available during the summer of 1977.

For the user, a relational database counts as an external variable and can-in
analogy to external PASCAL files-be connected to a user program through a formal
parameter in the program header. For the examples in this paper the program would

ACM Transactiona on Database Systems, Vol. 2, No. 3, September 1977.

260 0 Joachim W. Schmidt

appear thus :

program dbuser (injormalics77) ;

type .
.
.
ereltype = ,.. ;
preltype = . . . ;
creltype = ,.. ;
treltype = ,.. ;

var injormatics77: database employees: ereltype; papers: preltype;
courses:creltype; timetable: treltype end;

resultl, resulta,ereltype.

result7:relation (rname, rtitle) of record . . . end;
begin with injormntics77 do

end.

In parallel to the implementation of the constructs so far developed, we are
evaluating various further developments starting from standard PASCAL with
respect to their applicability to database problems. With the aid of the class
concept in [3], objects in a database can be declared in a form which hides the
details of the database realization from the user, while improving data integrity
and data security (see [15]). Problems of simultaneous access can be investigated
using the monitor concept in [3].

7. SUMMARY

We have proposed three language constructs for use with data types of mode rela-
tion as extensions to a high level language, in particular to PASCAL. These constructs
are: a repetition statement controlled by a relation; predicates, as extensions of
Boolean expressions; and a general relation constructor, dependent on predicates.
The language constructs have been developed stepwise from the most elementary
operations on relations.

For the purpose of information retrieval from a relational database the relation
constructor provides a solution which, in the context of a general purpose program-
ming language, seems satisfactory.

For other questions, such as the problem of altering data consistently, or si-
multaneous processing of a database by several users, the proposals can serve as a
framework for further investigations.

ACKNOWLEDGMENTS

I would like to thank H. Fischer, M. Jarke, D. Meyer, H.-H. Nagel, and W. Ullmer
for their encouragement and the many critical and constructive comments.

REFERENCES

1. ALLMAN, E., STONEBRAKER, M., AND HELD, G. Embedding a relational data sublanguage
in a general purpose programming language. SIGPLAN Notices (ACM) 8, 2 (Feb. 1976),
25-35.

ACM Transactions on Database Systema, Vol. 2, No. 3, September 1977.

Some High Level Language Constructs for Data of Type Relotion l 261

2. BOYCE, R.F., CHAMBERLIN, D.D., KING III, F.W., AND HAMMER, M.M. Specifying queries
as relational expressions: The SQUARE data sublanguage. Comm. ACM 18,ll (Nov. 1975),
621-628.

3. BRINCH HANSEN, P. The programming language Concurrent Pascal. IEEE Trans. Sojt-
ware Eng. SE-l, 2 (June 1975), 199-207.

4. CHAMBERLIN, D.D., AND BOYCE, R.F. SEQUEL: A structural English query language.
Proc. ACM SIGMOD Workshop, Ann Arbor, Mich., May 1974, pp. 249-264.

5. CODD, E.F. A relational model of data for large shared data banks. Comm. ACM 13, 6
(June 1970), 377-387.

6. CODD, E.F. A data base sublanguage founded on the relational calculus. Proc. ACM
SIGFIDET Workshop, San Diego, Calif., Nov. 1971, pp. 35-68.

7. EARLEY, J. Relational level data structures for programming languages. Acta Znjormatica
2, 4 (Dec. 1973), 293309.

8. FELDMAN, J.A., Low, J.R., SWINEHEART, D.C., AND TAYLOR, R.H. Recent developments
in SAIL-an ALGOL-based language for artificial intelligence. Proc. AFIPS 1972 FJCC,
Vol. 41, AFIPS Press, Montvale, N.J., pp. 1193-1202.

9. FRIESLAND, G., GROSSE-LINDEMANN, C.-O., LORENZ, F.H., NAGEL, H.-H., AND STIRL,
P.-J. A PASCAL compiler bootstrapped on a DEC-system-lo. 3. GI-Fachtagung iiber
Programmiersprachen, Lecture Notes in Computer Science, Vol. 7, B. Schlender and W.
Frielinghaus, Eds., Springer-Verlag, Berlin, 1974, pp. 101-113.

10. LISKOV, B., AND ZILLES, S. Programming with abstract data types. SIGPLAN Notices
(ACM) 9,4 (April 1974), 50-59.

11. PALERMO, F.P. A data base search problem. Proc. 4th Comptr. and Inform. Sci. Symp.,
J.T. Tou, Ed., Plenum Press, New York, pp. 67-101.

12. ROVNER, P.D., AND FELDMAN, J.A. The LEAP language and data structure. Information
Processing 68, North-Holland Pub. Co., Amsterdam, 1969, pp. 579-585.

13. SCHMID, H.A., AND SWENSON, J.R. On the semantics of the relational data model. Proc.
ACM SIGMOD Conf., San Jose, Calif., May 1975, pp. 211-223.

14. SCHMIDT, J.W. Untersuchung einer Erweiterung von Pascal zu einer Datenbanksprache.
Mitteilung Nr. 28, Inst. fiir Informatik, U. Hamburg, Hamburg, Germany, March 1976.

15. SCHMIDT, J.W. Type concepts for database definition: An investigation based on exten-
sions to Pascal. Bericht Nr. 34, Inst. fiir Informatik., U. Hamburg, Hamburg, Germany,
May 1977.

16. WIRTH, N. The programming language PASCAL. Acta Znjormtica 1, 1 (May 1971), 35-63.
17. ZLOOF, M.M. Query by example. Proc. AFIPS 1975 NCC, AFIPS Press, Montvale, N.J.,

pp. 431-438.

Received March 1977; revised May 1977

ACM Transactions on Database Systems, Vol. 2, No. 3, September 1977.

