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1. INTRODUCTION ,’ / 
/ 

A certain class of programming problems involves the processing of data with the 
following properties: there is a large amount of data, the data has internal connec- ,, / 
tions, and the data must be made available to many users. / 

Since Codd’s original paper [5], relations have been increasingly used 
solution of such database programming problems. 

The “classical” language constructs for the processing of data organized around 
relations are by now accepted to be essentially: (a) primitive instructions for 
altering relations at the level of individual tuples: insertion, deletion, and modi- 
fication; and (b) powerful retrieval facilities operating on relations at the level of 
sets of tuples: relational calculus- and algebra-oriented query languages. 

/ 

/ 

/ 

In recent years numerous data sublanguages have been proposed, and some 
implemented, which contain these constructs to a greater or laer extent. They 
differ from one another mainly in the conceptions of what usw friendliness means 
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Traditionally a database with its associated data language is seen as an inde- 
pendent system; data is interchanged with users or with programmed systems 
through fixed interfaces in the form of I/O areas. Problems which arise from the 
integration of database language constructs, such as a data structure relation, in high 
level languages have up to now seldom been investigated [7, 1, 141. Such investiga- 
tions are of interest from at least two points of view: first for the extension of 
existing high level languages, and second for the further development of data- 
base concepts themselves, in particular the relation concept. 

The currently prevalent high level programming languages have no constructs 
for the processing of large amounts of interrelated data. The file concept does not 
offer a general solution to this problem; files may be able to hold large quantities of 
data but the connections between data elements are inadequately handled, both 
at the level of high level language operations and at the level of access paths. As 
demonstrated by the example of the programming language SAIL [S] which contains 
ALGOL 60 and LEAP [12] data structures, there exists quite clearly a need for an 
algorithmic language with efficient constructs for handling intricately connected 
data. 

Such investigations can also serve as a vehicle for the further development of 
the relation concept itself. The necessity for such development shows up, for ex- 
ample, in the previously mentioned difference in power between altering instruc- 
tions and retrieval facilities. Whereas for a single retrieval command, all connec- 
tions between relation tuples which are necessary for the answer to a query are 
evaluated, only a single tuple in a single relation can be inserted, deleted, or up- 
&ted by an altering instruction. The user must therefore, in general, code a con- 
sis\nnt database alteration transaction as a sequence of such altering instructions, 
each tiecting a single relation. The user thereby bears most of the responsibility 
for the central problem of the integrity of the database. 

A similar problem situation in general purpose programming languages led to the 
development of the concept of abstract data types [lo]. A stack variable, for ex- 
ample, COUN be implemented in a high level programming language by means of an 
array variable, a ‘Boolean variable, and an integer variable. These variables must 
be altered consitiently when the value of the stack variable is changed (e.g. by 
push or pop). We could analogously define alterations in a database as operations 
on abstract data typss and implement them as procedures on relations. In more 
recent work, Schmid asd Swenson [13] for example, the beginnings of such a de- 
velopment can be discerned. The further development of database language con- 
structs, however, cannot be discussed in the limited context of data sublanguages. 
On the contrary, this assumes to a great extent the concepts of high level program- 
ming languages. 

These tendencies will not be further discussed in this paper (see e.g. [15]). In 
Section 2 the definition of types of mode relation and the declaration of relation 
variables are briefly described, together with the elementary read and write opera- 
tions for relations. Section 3 introduces a repetition statement controlled by a rela- 
tion variable. The generalization of Boolean expressions to predicates is handled in 
Section 4. In Section 5 the concept of a generalized relation constructor is discussed. 
Finally Section 6 outlines the state of the implementation and some further de- 
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velopment. It should be noted that the language constructs have been designed to 
fit into PASCAL [16] without the introduction of too many additional concepts. 

2. ELEMENTARY OPERATIONS ON RELATIONS 

The definition of data types of mode relation is based upon data types of mode 
record. The value of a variable of a particular relation type is a set of tuples, each 
of which is in turn of the record type laid down in the definition of the relation type. 
The fields of these records will be taken to be of scalar type or of type string (“flat” 
records). Furthermore these types are presumed to be ordered types. 

A second component of the definition of a relation type is the designation of 
certain fields of the relation tuples as a key. A key list characterizes a particular 
part of the tuple by enumerating the corresponding field identifiers. For these 
fields it holds that among the tuples of the relation a particular value assignation 
occurs at most once. The values of the key fields therefore uniquely determine a 
tuple in the relation. An ordering of the key values is defined by the presumed 
ordering on the values of the individual key fields and by the order of the key field 
identifiers in the key list. 

Example 1. If employees are characterized by the attributes employee number 
(unique), employee status, and employee name, then we can define relation vari- 
able employees as follows: 

type erectype = record enr, estatus:integer; enume:string end; 
ereltype = relation (enr) of erectype; 

var employees:ereltype; 

Along with data types of mode relation, operations are defined which allow values 
of relation variables to be altered and to be read tuple by tuple. 

2.1 Elementary Altering Operations 

A value change of a relation variable can occur through insertion, deletion, or modi- 
fication of tuples. These operations are not in fact “elementary” insofar as through 
them not single tuples, but whole sets of tuples (i.e. again a relation variable), 
can be inserted, deleted, or modified. However, these operations alter at any given 
time the value of only one relation variable. 

The insertion operator :+ brings about the insertion of tuples into the target 
operand to its left, dependent on the source operand to its right: 

rell :+ rel2; 

Source and target operands are relation variables of the same type. Into rell are 
inserted copies of those tuples of reZ2 whose key values do not already occur in 
any tuple of rell. The source operand rel2 remains unchanged. 

The deletion operator :- brings about the deletion of tuples in the target operand 
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dependent on the source operand: 

rell :- rel2; 

Source and target operands are relation variables of the same type. From rell are 
deleted those tuples also contained in rel2. The source operand reZ2 remains un- 
changed. 

The replacement operator :& brings about the replacement of tuples in the target 
operand dependent on the source operand: 

rell :& re12; 

Source and target operands are relation variables of the same type. Each tuple of 
rell whose key value occurs in a tuple of re12 is replaced by a copy of the corre- 
sponding tuple in rel2. The source operand .cmains unchanged. Note that key 
values cannot be changed with the aid of the replacement operator. 

The assignment operator := assigns relation values between relation variables 
of the same type: 

rell := reE2; 

A generalization of admissable source operands towards relational expressions will 
be treated in Section 5. 

2.2 An Elementary Relation Constructor 

An anonymous 1-tuple relation can be constructed from a record variable with the 
aid of the elementary relation constructor [..I. Of course any combination of fields 
fulfills for this relation the requirements for a key; these relations are therefore 
type-compatible with every relation variable whose type definition is based on the 
type of the record variable, e.g. 

rel := [ret]; 

The empty relation is denoted correspondingly by [ 1. 
Example 2. A tuple with employee number 2, employee name Nessie, and em- 

ployee status 1 is to be inserted in the relation employees. 

type erectype = record enr, estatus:inleger; ename:slring end; 
ereltype = relation (em) of erectype; 

var erec:erectype; 
employees:ereltype; 

begin . 

erec.enr := 2; 
erec.estalus := 1; 
erec.ename : = ‘nessie’; 
employees :+ [erec] 

end. 
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2.3 Elementary Retrieval Operations 

Two standard procedures low(reZ) and next(reZ) are defined for the tuple-wise 
reading of relation variables. Furthermore the Boolean function aor(reZ) (all ( f 
relation) and for each relation an implicitly declared buffer variable reZ’/’ are avail- 
able. 

The tuple of the relation rel with the lowest key value is assigned to the buffer 
reZT by the procedure call low(reZ). The tuple with the next highest key value is 
assigned to reZ1 by the procedure call next(reZ). If such a tuple does not exist then 
aor(reZ) becomes true and reZT becomes undefined. 

Example 3. Find those employees with the status of an assistant professor 
(employee status 2). 

Solution 3.1. 

type erectype = record enr, estatus:integer; enume:string end; 
ereltype = relation (enr) of erectype; 

var employees, result:ereltype; 
begin . 

result := [ 1; 
low (employees) ; 
while not aor(employees) do 
begin if employees r .eslatus = 2 then result :+ [employees f 1; 

next (employees) 
end 

end. 

The solution method underlying this example program accesses relations tuple- 
wise and in order, in the main controlled by the user. It is not generally satisfying 
for several reasons: 

The ordering of tuple access by increasing key value is unnecessary from the 
point of view of program logic. 

With respect to problem orientation the language constructs available for rela- 
tions up to now are inadequate; this rapidly becomes evident with more complex 
examples. The above program is a solution in terms of the f11c concept and not in 
terms of relational databases. 

For particular problems these elementary constructs are insufficient, e.g. nested 
loops accessing the same relation cannot be programmed. 

The notation could be more concise. 
There is little possibility for automatic optimization of accesses, for example by 

free choice of ordering or by processing of sets of tuples. 

In the following sections we will develop step-by-step language constructs which 
should to a great extent overcome such objections. 

3. THE REPETITION STATEMENT foreach 

The foreach statement has the general form: 
(foreach statement) : : = foreach (control record variable) 

in (range relation variable) 
do (statement) 
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The execution of a statement may be repeated with the aid of the foreach state- 
ment. For each repetition the control variable is assigned an arbitrary new tuple 
from the range relation until all tuples of the relation have been used. The control 
variable is declared implicitly to have the same record type that the range relation 
is based on. The scope of the control variable definition is the statement following 
do; within this scope the key values of the control variable and the range relation 
must not be altered. By using the foreach statement the solution for Example 3 
becomes : 

Solution 3.2. 

(type de$nitions and variable declarations as in 3.1. ] 

begin . 

result := [ 1; 
foreach erec in employees do 

if erec.status = 2 then result :+ [erec] 
end. 

For a further example we introduce the relation timetable listing lectures held by 
employees and described by attributes employee number and course number, 
together with day, time, and place of each lecture. 

Example 4. Find all those employees who lecture on Fridays. 
Solution 4.1. 

type erectype = record enr, estatus:integer; enamezstring end; 
ereltype = relation (enr) of erectype; 
trectype = record tenr, tcnr, ttime:integer; 

t&y, troom:string end; 
treltype = relation (tenr, tcnr, tday) of treetype; 

var employees, result: ereltype; 
timetable: treltype; 

begin . 

result := [ 1; 
foreach erec in employees do 

foreach tree in timetable do 

end. 

if (erec.enr = trec.tenr) and (trec.tduy = ffriday’) 
then result :+ [erec] 

If we look at the example and its solution more closely we notice that: 
The inner loop with range relation timetable is in general traversed too often; 

that is, whenever an entry for a particular employee’s lecture held on Friday has 
been found, the remainder of the relation timetable is nevertheless processed. 

If an employee lectures several times on a Friday, the corresponding employee 
record is inserted several times into the result. By virtue of the definition of the 
insertion operator this does not, however, affect the value of the target operand. 
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It would also be possible to avoid repeated insertions quite easily by programming 
an extra exit from the loop. In view of the developments in the following section, 
and for didactic reasons, we shall not bother to do this here. 

The inner loop is only necessary to test a condition; in this particular case a 
condition on the value of the control variable tree. The control variable erec on 
the other hand is also needed for the construction of the result relation. 

This state of affairs is more evident.in the following solution for Example 4: 
Solution 4.2. 

itype definitions as in 4.1.) 

var employees, result:ereltype; 
ti&etable:keltype; -- 
some-tree-in-timetable: boolean; 

begin . 

result := [ 1; 
foreach erec in employees do 
begin some-tree-in-timetuble : = false; 

foreach tree in timetable do 
some-tree-in-timetable := some-tree-ktimetable 01 
(erec.enr = trec.tenr) and (trec.tday = ‘jrickzy’); 

if some-tree-in-timetable then result :+ [erec] 
end 

end. 

The additional exit from the inner loop is again omitted for didactic reasons. 
Example 5. Find all employees who give no lectures. 
This example contains a universal condition. 
Solution 5.1. 

itype definitions as in 4.1.) 

var employees, result:ereltype; 
timetable: treltype; 
all-trec-in-timetable: boolean; 

begin . 

. 
result := [ 1; 
foreach erec in employees do 
begin all-tree-in-timetable : = true; 

foreach tree in timetable do 
all-tree-in-timetable := all-trec-in-timetable and (erec.enr # trecdenr) ; 

if alLtrec-in-timetable then result :+ [erec] 
end 

end. 

ACM Transactions on Database Systems, Vol. 2, No. 3. September 1977. 



254 9 Joochim W. Schmidt 

It seems natural for such problems, in which relations are used in testing one 
or all of their tuples against a certain condition, not to use repetition constructs 
but to introduce a special construct more related to this problem. 

4. PREDICATES OVER RELATIONS 

Examples 4 and 5 each require two nested loops. However, in both cases the outer 
loop and the inner loop have quite different significances in the logic of the program. 

The outer loop over the range relation employees uses a logical condition evaluated 
by means of the inner loop-this is especially clear in Solutions 4.2 and 5.1. In both 
examples the condition governs the insertion of the value of the outer control 
variable into the result relation. Consequences will be discussed in Section 5. 

The inner loop over the range relation timetable evaluates this condition. The 
condition itself is respectively an or connection (Example 4) or an and connection 
(Example 5) of Boolean terms involving tuples of the relation timetcdde, and is 
implemented by the foreach statement. 

In the context of predicate logic these conditions are first-order predicates. This 
is more evident if one introduces range coupled quantifiers, i.e. quantifiers for which, 
together with the control variable (bound variable), the scope over which its 
value ranges must also be given (analogous to the foreach statement). 

Predicates over relations will therefore be defined thus: 

(predicate) : := (quantifier) (control record variable) 
in (range relation variable) 

((logical expression)) 
(logical expression) : := (term) 1 (term) (logical operator) (logical expression) 
(quantifier) ::= some 1 all 
(logical operator) ::= and 1 or 

Terms consist of components of the control variable, program variables, or con- 
stants, connected by the relational operators = , < , > , #, 5, 2 ; terms may also 
be predicates. 

The implicitly declared control variable of the predicate is again of that record 
type in the range relation declaration. 

4.1 The Existential Quantifier some 

The predicate 

some ret in rel ((logical expression)) 

is true iff at least one value of the control variable ret makes the logical expression 
true. The values of the control variable are defined by the tuples of the range re- 
lation re2. In general the logical expression will contain apart from bound variables 
further program variables and constants. 

The solution for Example 4 using the some quantifier now looks like this: 
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Solution 4.3. 

idji ‘t’ e n2 sons and declarations as in 4.1.) 

begin . 

result := [ 1; 
foreach erec in employees do 

if some tree in timetable ((erec.enr = trecdenr) and (treeday = ifriday’)) 
then result :-I- [erec] 

end. 

The tiresome problem of an additional exit from the loop has now disappeared 
for the user, and has been shifted on to the implementor responsible for the efficient 
implementation of predicates. An efficient implementation can above all exploit 
the fact that inside a predicate individual tuples of the range relation are not used 
as statement variables. The sequential processing of individual tuples can there- 
fore be replaced by processing tuple sets in parallel. Comparing the three solutions 
developed for Example 4, we see that: 

Solution 4.1, “while not aotftimetable) do,” describes a sequential tuple-wise 
processing ordered by key values. 

Solution 4.2, “foreach tree in timetable do,” proceeds sequentially and tuple- 
wise but with no specific ordering. 

Solution 4.3, “some tree in timetable,” can be implemented by processing tuple 
sets in parallel. 

If one considers that these tuple sets arc so large in practice that they must be kept 
on secondary storage, these differences are highly significant. 

4.2 The Universal Quantifier all 

The predicate 

all Tee in rel ((logical expression)) 

is true iff all values of the control variable WC make the logical expression true. 
The values of the control variable are defined by the tuples of the range relation 
rel. 

Using the all quantifier, the solution to Example 5 can be written thus: 
Solution 5.2. 

&i ‘t’ e 722 sons and declarations as in 5.1. ] 

begin . 

result := [ 1; 
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foreach erec in employees do 
if all tree in timetable (erec.enr f trec.tenr) 
then result :+ [erec] 

end. 

4.3 Nested Quantifiers 

Predicates may contain several quantifiers. For an appropriate example we in- 
troduce a third relation that describes courses by their attributes course number 
(unique), course level, and course title. 

Now an extension to Example 5: 
Example 6. Find those employees who give no lectures above the first year 

(course level 1); 
This example requires both a universal and existential condition. 
Solution 6.1. 

type erectype = record enr, estatus:integer; enume:string end; 
ereltype = relation (enr) of erectype; 
trectype = record tenr, tcnr, ttime:integer; 

May, troom:string end; 
treltype = relation (tenr, tcnr, tday) of trectype; 
crectype = record cnr, clevekinteger; cname:string end; 
creltype = relation (cnr) of crectype; 

var employees, result: ereltype; 
timetable: treltype; 
courses:creliype; 

begin . 

result := [ 1; 
foreach erec in employees do 

if all tree in timetable ((erec.enr # trec.tenr) or 
some crez in courses ((trechnr = crecmr) and (crec.cZevel = 1))) 

then result :+ [erec] 
end. 

It becomes evident with examples like this that data elements in a database are 
typically not processed in isolation but together with their mutual logical con- 
nections: A particular tuple of the relation employees is only further processed when 
it stands in a particular relation to the tuples of timetable and furthermore there is 
a particular tuple in the relation courses such that . . . . 

The actual processing of the tuples is so far identical in all examples: Dependent 
upon a predicate they are inserted into the result relation or not. The solutions to 
a large class of problems in retrieving data from databases can be programmed in 
this way. 

We are now ready to go one step further and develop a specific language con- 
struct for this standard programming problem based on the constructs introduced 
so far. 
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5. GENERALIZING THE RELATION CONSTRUCTOR 

With the concepts developed so far the value of a relation variable can be altered 
by deleting, inserting, or modifying tuples and by assigning a relation-valued ex- 
pression. These expressions are, however, up to now limited to single relation vari- 
ables and to the elementary relation constructor introduced in Section 2.2. The 
elementary constructor is only capable of making a 1-tuple relation [CC] from a 
record variable Z. This restriction has ‘led, in all the examples handled so far, to 
the construction of new relations according to the following schema: tuple-wise 
access to the source relation, sequential processing of these tuples as records, and 
tuple-wise construction of the result relation. On the other hand, in the quanti- 
fiers and the logical expressions we already have the necessary prerequisites for a 
generalization of the relation constructor along the lines 

[z in X: P(z, r, s, . ..)I 

where z is the free variable which describes the result tuple, X is a range relation 
which holds the possible value tuples for 2, and P is some logical expression which 
depends on the free variable, and possibly on further bound variables r, s, etc., 
and on constants. 

5.1 Construction of Subrelations 

A first step in generalizing the relation constructor leads to the definition 

(general relation constructor) ::= [each (control record variable) 
in (range relation variable): 

(logical ezpression)] 

The implicitly declared control variable is again of the same record type as that of 
the range relation. The logical expression has the usual logical and relational 
ope&ors, and it may also contain quantifiers. As operands, the logical expression 
may contain components of the free control variable of the constructor and pos- 
sibly of the bound variables of predicates, as well as program variables and con- 
stants. 

With the aid of the general relation constructor, the solutions of the previous 
examples may be further simplified: 

Solutions 3.3, 4.4, 5.3, 6.2. 

-- 

type erectype = record enr, estatus:integer; ename:string end; 
ereltype = relation (enr) of erectype; 
trectype = record tenr, tcnr, ttime:integer; 

Hay, troom:string end; 
treltype = relation (tenr, tcnr, &lay) of trectype; 
crectype = record cnr, clevel:integer; cname:string end; 
creltype = relation (cnr) of crectype; 

var employees, result3, result4, result5, result6:ereltype; 
timetable: treltype; 
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courses:creltype; 
begin . 

. 

result3 := [each erec in employees:erec.estatus = 21; 
result4 := [each erec in employees:some tree in timetable ((erec.enr = trec.tenr) and 

(trecdday = ‘friduy’))] ; 
result5 := [each erec in employees:all tree in timetable (erecenr # trec.tenr)]; 
result6 := [each erec in employees:all tree in timetable ((erec.enr # trec.tenr) or 

some wee in courses ((tree&w = wec.cnr) and (crec.cleveZ = l)))] 
end. 

In the proposed form the relation constructor can only create subrelations from 
one relation variable. The general case of the construct,ion of relations with the 
aid of several free variables and arbitrary result tuples made up of their components 
will be treated in the next section. 

5.2 The General Relation Constructor 

In its most general form a relation constructor can be defined using several free 
variables. Its value is a relation defined by tuples whose components come from 
components of the free variables of the constructor, and maybe program variables 
and constants : 

(general relation constructor) : : = [each ((target component list}) 
for (control record variable list) 
in (range Telation variable list): 

(logical expression)] 
(target component list) ::= (target component) 1 (target component); (target component list) 
(target component) ::= (control record component variable) 1 (variable) 1 (constant) 1 empty 

The correspondence between the control variables and the range variables is 
implied by their position in the respective lists. The previously defined relation 
constructor of Section’5.1 is a special case of this more general constructor. 

A fourth relation will be introduced for the last example; this relation contains 
the publications of the employees, described by the title, the year of publication, 
and, to identify the associated employee, an employee number. 

Example 7. For those employees who give lectures, find the names and the 
title and year of their publications. 

Solution 7.1. 

type erectype = record enr, estatus:integer; ename:string end; 
ereltype = relation (em) of erectype; 
prectype = record ptitle:string; pyear, penr:integer end; 
preltype = relation (ptitle, pew) of prectype; 
trectype = record tenr, tcnr, ttime:integer; 

tday, troom:string end; 
treltype = relation (tenr, tcnr, t&y) of trectype; 

var employees: ereltype; 
papers:preltype; 
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timetable: treltype; 
result:relation (rname, rtitle) of 

record rname, rtitlezstring; ryeur:integer end; 
begin . 

result := [each (erec.enume; prec.ptitle; prec.pyear) 
for erec, prec in employees, papers: 
(prec.penr = erec.enr) and 

end. 
some tree in timetable (erec.enr = trec.tenr)] 

Specific problems with constructed relations, such as the definition of their 
keys and the possibility of checking keys at compilation time, will be treated else- 
where. 

The relational constructor has certain advantages over the previous methods of 
solution : 

It is a nonprocedural (very high level) language construct, in the sense that the 
user does not program a procedure which produces the result, but gives merely a 
declaration of certain properties of the result. 

The notation is concise and keeps the important information textually to- 
gether. This increases the readability for the user and facilitates a more efficient 
implementation. 

The relation constructor may be given well-defined semantics in a similar way 
to predicate calculus. 

The set of meaning preserving transformations of constructors is, in the: context 
of predicate calculus, comprehensible. The freedom in the execution of the con- 
structor thus obtained is very desirable for optimization. 

At this point similarities to Codd’s data sublanguage ALPHA [6] should be stressed. 
In particular the representation of queries in this calculus oriented language is 
closely akin to the relational constructor presented here. However, Codd considers 
relational calculus as an application of predicate calculus, whereas the relational 
constructor has been developed from, and integrated in, the concepts of a pro- 
gramming language. 

6. SYSTEM IMPLEMENTATION AND FURTHER DEVELOPMENT 

The various language constructs treated here are being incorporated into the PASCAL 
compiler for the DECsystem-10 [9] of the Institute for Informatics at Hamburg 
University. Apart from the necessary modifications to the compiler, a run-time 
system is being produced for the execution of the relational constructor and the 
predicates. This basically consists of an algorithm derived from that of Palermo 
[II] with additional optimization and supported by some advanced access methods. 
A first version of the system is expected to be available during the summer of 1977. 

For the user, a relational database counts as an external variable and can-in 
analogy to external PASCAL files-be connected to a user program through a formal 
parameter in the program header. For the examples in this paper the program would 
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appear thus : 

program dbuser (injormalics77) ; 

type . 
. 
. 
ereltype = ,.. ; 
preltype = . . . ; 
creltype = ,.. ; 
treltype = ,.. ; 

var injormatics77: database employees: ereltype; papers: preltype; 
courses:creltype; timetable: treltype end; 

resultl, resulta, . . ..ereltype. 

result7:relation (rname, rtitle) of record . . . end; 
begin with injormntics77 do 

end. 

In parallel to the implementation of the constructs so far developed, we are 
evaluating various further developments starting from standard PASCAL with 
respect to their applicability to database problems. With the aid of the class 
concept in [3], objects in a database can be declared in a form which hides the 
details of the database realization from the user, while improving data integrity 
and data security (see [15]). Problems of simultaneous access can be investigated 
using the monitor concept in [3]. 

7. SUMMARY 

We have proposed three language constructs for use with data types of mode rela- 
tion as extensions to a high level language, in particular to PASCAL. These constructs 
are: a repetition statement controlled by a relation; predicates, as extensions of 
Boolean expressions; and a general relation constructor, dependent on predicates. 
The language constructs have been developed stepwise from the most elementary 
operations on relations. 

For the purpose of information retrieval from a relational database the relation 
constructor provides a solution which, in the context of a general purpose program- 
ming language, seems satisfactory. 

For other questions, such as the problem of altering data consistently, or si- 
multaneous processing of a database by several users, the proposals can serve as a 
framework for further investigations. 

ACKNOWLEDGMENTS 

I would like to thank H. Fischer, M. Jarke, D. Meyer, H.-H. Nagel, and W. Ullmer 
for their encouragement and the many critical and constructive comments. 

REFERENCES 

1. ALLMAN, E., STONEBRAKER, M., AND HELD, G. Embedding a relational data sublanguage 
in a general purpose programming language. SIGPLAN Notices (ACM) 8, 2 (Feb. 1976), 
25-35. 

ACM Transactions on Database Systema, Vol. 2, No. 3, September 1977. 



Some High Level Language Constructs for Data of Type Relotion l 261 

2. BOYCE, R.F., CHAMBERLIN, D.D., KING III, F.W., AND HAMMER, M.M. Specifying queries 
as relational expressions: The SQUARE data sublanguage. Comm. ACM 18,ll (Nov. 1975), 
621-628. 

3. BRINCH HANSEN, P. The programming language Concurrent Pascal. IEEE Trans. Sojt- 
ware Eng. SE-l, 2 (June 1975), 199-207. 

4. CHAMBERLIN, D.D., AND BOYCE, R.F. SEQUEL: A structural English query language. 
Proc. ACM SIGMOD Workshop, Ann Arbor, Mich., May 1974, pp. 249-264. 

5. CODD, E.F. A relational model of data for large shared data banks. Comm. ACM 13, 6 
(June 1970), 377-387. 

6. CODD, E.F. A data base sublanguage founded on the relational calculus. Proc. ACM 
SIGFIDET Workshop, San Diego, Calif., Nov. 1971, pp. 35-68. 

7. EARLEY, J. Relational level data structures for programming languages. Acta Znjormatica 
2, 4 (Dec. 1973), 293309. 

8. FELDMAN, J.A., Low, J.R., SWINEHEART, D.C., AND TAYLOR, R.H. Recent developments 
in SAIL-an ALGOL-based language for artificial intelligence. Proc. AFIPS 1972 FJCC, 
Vol. 41, AFIPS Press, Montvale, N.J., pp. 1193-1202. 

9. FRIESLAND, G., GROSSE-LINDEMANN, C.-O., LORENZ, F.H., NAGEL, H.-H., AND STIRL, 
P.-J. A PASCAL compiler bootstrapped on a DEC-system-lo. 3. GI-Fachtagung iiber 
Programmiersprachen, Lecture Notes in Computer Science, Vol. 7, B. Schlender and W. 
Frielinghaus, Eds., Springer-Verlag, Berlin, 1974, pp. 101-113. 

10. LISKOV, B., AND ZILLES, S. Programming with abstract data types. SIGPLAN Notices 
(ACM) 9,4 (April 1974), 50-59. 

11. PALERMO, F.P. A data base search problem. Proc. 4th Comptr. and Inform. Sci. Symp., 
J.T. Tou, Ed., Plenum Press, New York, pp. 67-101. 

12. ROVNER, P.D., AND FELDMAN, J.A. The LEAP language and data structure. Information 
Processing 68, North-Holland Pub. Co., Amsterdam, 1969, pp. 579-585. 

13. SCHMID, H.A., AND SWENSON, J.R. On the semantics of the relational data model. Proc. 
ACM SIGMOD Conf., San Jose, Calif., May 1975, pp. 211-223. 

14. SCHMIDT, J.W. Untersuchung einer Erweiterung von Pascal zu einer Datenbanksprache. 
Mitteilung Nr. 28, Inst. fiir Informatik, U. Hamburg, Hamburg, Germany, March 1976. 

15. SCHMIDT, J.W. Type concepts for database definition: An investigation based on exten- 
sions to Pascal. Bericht Nr. 34, Inst. fiir Informatik., U. Hamburg, Hamburg, Germany, 
May 1977. 

16. WIRTH, N. The programming language PASCAL. Acta Znjormtica 1, 1 (May 1971), 35-63. 
17. ZLOOF, M.M. Query by example. Proc. AFIPS 1975 NCC, AFIPS Press, Montvale, N.J., 

pp. 431-438. 

Received March 1977; revised May 1977 

ACM Transactions on Database Systems, Vol. 2, No. 3, September 1977. 


